Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(2): fcad053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938526

RESUMO

This study aimed to test our hypothesis that the cerebellum plays an important role in the generation of the optical-geometric illusion known as the Poggendorff illusion, the mechanism of which has been explained by accumulated experience with natural scene geometry. A total of 79 participants, comprising 28 patients with isolated cerebellar stroke, 27 patients with isolated cerebral stroke and 24 healthy controls, performed Poggendorff illusion tasks and 2 different control tasks. We also investigated core brain regions underpinning changes in the experience of the illusion effect using multivariate lesion-symptom mapping. Our results indicate that patients with isolated cerebellar stroke were significantly less likely to experience the Poggendorff illusion effect than patients with isolated cerebral stroke or healthy controls (74.6, 90.5 and 89.8%, respectively; F(2,76) = 6.675, P = 0.002). However, there were no inter-group differences in the control tasks. Lesion-symptom mapping analysis revealed that the brain lesions associated with the reduced frequency of the Poggendorff illusion effect were mainly centred on the right posteromedial cerebellar region, including the right lobules VI, VII, VIII, IX and Crus II. Our findings demonstrated, for the first time, that patients with cerebellar damage were significantly less likely to experience the Poggendorff illusion effect and that right posteromedial cerebellar lesions played an important role in this effect. These results provide new insight into alterations of a geometric illusion effect in patients with cerebellar disorders and pave the way for future clinical use of the illusion task to detect cerebellar abnormalities.

2.
J Parkinsons Dis ; 11(4): 2005-2016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366367

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) in Parkinson's disease (PD) is considered a risk factor for PD with dementia (PDD). Verbal fluency tasks are widely used to assess executive function in PDD. However, in cases of PD with MCI (PD-MCI), the relative diagnostic accuracy of different qualitative verbal fluency measures and their related neural mechanisms remain unknown. OBJECTIVE: This study aimed to investigate the relative diagnostic accuracy of qualitative (clustering and switching) verbal fluency strategies and their correlates with functional imaging in PD-MCI. METHODS: Forty-five patients with PD (26 with MCI and 19 without MCI) and 25 healthy controls underwent comprehensive neurocognitive testing and resting-state functional magnetic resonance imaging. MCI in patients with PD was diagnosed according to established clinical criteria. The diagnostic accuracy of verbal fluency measures was determined via receiver operating characteristic analysis. Changes in brain functional connectivity between groups and across clinical measures were assessed using seed-to-voxel analyses. RESULTS: Patients with PD-MCI generated fewer words and switched less frequently in semantic and phonemic fluency tasks compared to other groups. Switching in semantic fluency showed high diagnostic accuracy for PD-MCI and was associated with reduced functional connectivity in the salience network. CONCLUSION: Our results indicate that reduced switching in semantic fluency tasks is a sensitive and specific marker for PD-MCI. Qualitative verbal fluency deficits and salience network dysfunction represent early clinical changes observed in PD-MCI.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Função Executiva , Humanos , Neuroimagem , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
3.
Neuroimage Clin ; 31: 102760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34274725

RESUMO

BACKGROUND: Foreign accent syndrome (FAS) is a rare acquired speech disorder wherein an individual's spoken accent is perceived as "foreign." Most reported cases involve left frontal brain lesions, but it is known that various other lesions can also cause FAS. To determine whether heterogeneous FAS-causing lesions are localized to a common functional speech network rather than to a single anatomical site, we employed a recently validated image analysis technique known as "lesion network mapping." METHODS: We identified 25 published cases of acquired neurogenic FAS without aphasia, and mapped each lesion volume onto a reference brain. We next identified the network of brain regions functionally connected to each FAS lesion using a connectome dataset from normative participants. Network maps were then overlapped to identify common network sites across the lesions. RESULTS: Classical lesion overlap analysis showed heterogeneity in lesion anatomical location, consistent with prior reports. However, at least 80% of lesions showed network overlap in the bilateral lower and middle portions of the precentral gyrus and in the medial frontal cortex. The left lower portion of the precentral gyrus is suggested to be the location of lesions causing apraxia of speech (AOS), and the middle portion is considered to be a larynx-specific motor area associated with the production of vowels and stop/nasal consonants and with the determination of pitch accent. CONCLUSIONS: The lesions that cause FAS are anatomically heterogeneous, but they share a common functional network located in the bilateral posterior region of the frontal lobe. This network specifically includes not only the lower portion of the central gyrus, but also its middle region, which is referred to as the larynx motor cortex and is known to be associated with phonation. Our findings suggest that disrupted networks in FAS might be anatomically different from those in AOS.


Assuntos
Afasia , Córtex Motor , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Distúrbios da Fala , Síndrome
4.
Exp Neurol ; 336: 113538, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253705

RESUMO

Accumulating evidence indicates time-of-day variations in ischemic neuronal injury. Under ischemic conditions, Zn2+ is massively released from hippocampal glutamatergic neurons, and intracellular Zn2+ accumulation results in neuron death. Notably, excitatory amino acid carrier 1 (EAAC1), known as a cysteine transporter, is involved in Zn2+ homeostasis, and its expressions exhibit a diurnal fluctuation. This study aimed to investigate whether time of day of an ischemic insult affects Zn2+ accumulation and neuronal injury and determine whether altered Zn2+ accumulation is modulated by EAAC1 diurnal fluctuation in the hippocampus in a mouse model of ischemic stroke. Mice subjected to transient global ischemia for 40 min at Zeitgeber time 18 (ZT18) (23:00) exhibited reduced Zn2+ accumulation and neuronal death in the hilar region of the hippocampus compared to those at ZT4 (09:00). The EAAC1 protein expression in the hippocampus was increased at ZT18 relative to ZT4. Intracerebroventricular injection of a non-selective excitatory amino acid transporter inhibitor, DL-threo-ß-benzyloxyaspartate, or a selective EAAC1 inhibitor, L-aspartic acid ß-hydroxamate, increased ischemia-induced Zn2+ accumulation and neuronal death in the hilus at ZT18. These findings suggest that ischemia-induced Zn2+ accumulation displays circadian fluctuations through diurnal variations in EAAC1 expressions and affects susceptibility to ischemic neuronal injury in the hippocampal hilar region.


Assuntos
Isquemia Encefálica/metabolismo , Ritmo Circadiano/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Hipocampo/metabolismo , Zinco/metabolismo , Animais , Morte Celular , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Glutationa/metabolismo , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Neurônios/patologia
5.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327458

RESUMO

(1) Background: Sesame has been popular as a healthy food since ancient times, and effects of the aroma component of roasted sesame are also expected. However, little research has been reported on its scent; (2) Methods: Jcl:ICR male mice were housed under water immersion stress for 24 h. Then, the scent of saline or sesame oil was inhaled to stress groups for 90 min. We investigated the effects of sesame oil aroma on the behavior and brains of mice; (3) Results: In an elevated plus maze test, the rate of entering to open arm and the staying time were decreased by the stress. These decrements were significantly enhanced by sesame oil aroma. Stress had a tendency to increase the serum corticosterone concentration, which was slightly decreased by the aroma. Expression of Kruppel-like factor-4 (Klf-4) and Dual-specificity phosphatase-1 (Dusp-1) in the striatum were increased by water immersion stress, and the level of Klf-4 and Dusp-1 in the striatum and hippocampus were significantly attenuated by sesame oil aroma (4) Conclusions: The present results strongly suggest that the odor component of sesame oil may have stress suppressing effects. Moreover, Klf-4 and Dusp-1 may be sensitive stress-responsive biomarkers.


Assuntos
Ansiolíticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Odorantes/análise , Óleo de Gergelim/farmacologia , Estresse Psicológico/tratamento farmacológico , Administração por Inalação , Animais , Ansiolíticos/química , Biomarcadores/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Corticosterona/sangue , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Óleo de Gergelim/química , Sesamum/química , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Natação/psicologia
6.
Neurourol Urodyn ; 39(6): 1687-1699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558992

RESUMO

AIM: Brain nitric oxide (NO) have been reported in regulation of the sympatho-adrenomedullary system, which can affect voiding and storage functions. Therefore, we investigated effects of intracerebroventricularly (icv) administered 3-(4-morpholinyl)sydnonimine, hydrochloride (SIN-1) (NO donor) on the micturition reflex, focusing on their dependence on the sympatho-adrenomedullary system and on brain N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. METHODS: Plasma noradrenaline and adrenaline were measured just before and 5 minutes after SIN-1 administration. Evaluation of urodynamic parameters was started 1 hour before SIN-1 administration or intracerebroventricular pretreatment with other drugs. RESULTS: SIN-1 (100 and 250 µg/animal) elevated plasma adrenaline and reduced intercontraction interval ([ICI] values; 110.5% [SIN-1, 0 µg] and 54.9% [SIN-1, 250 µg] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.59]) without affecting plasma noradrenaline or maximal voiding pressure. SIN-1 (250 µg/animal) reduced single-voided volume and bladder capacity without affecting post-voiding residual volume. The SIN-1 (250 µg/animal)-induced adrenaline elevation and ICI reduction were attenuated by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, sodium salt (carboxy-PTIO) (NO scavenger, icv) (ICI values; 44.7% [vehicle + SIN-1] and 77.5% [carboxy-PTIO + SIN-1] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.51]). Acute bilateral adrenalectomy abolished SIN-1-induced adrenaline elevation, while showed no effect on the SIN-1-induced ICI reduction. The ICI reduction was attenuated by MK-801 (NMDA receptor antagonist, icv) (ICI values; 47.0% [vehicle + SIN-1] and 87.6% [MK-801 + SIN-1] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.61]), but not by DNQX (AMPA receptor antagonist, icv). CONCLUSION: Brain NO is involved in facilitation of the rat micturition reflex through brain NMDA receptors, independently of the sympatho-adrenomedullary outflow modulation.


Assuntos
Encéfalo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Micção/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Maleato de Dizocilpina/farmacologia , Epinefrina/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Norepinefrina/sangue , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Micção/fisiologia
7.
J Trace Elem Med Biol ; 61: 126518, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32353820

RESUMO

BACKGROUND: Glial cells such as astrocytes and microglia play an important role in the central nervous system via communication between these glial cells. Activated microglia can exhibit either the inflammatory M1 phenotype or the anti-inflammatory M2 phenotype, which influences astrocytic neuroprotective functions, including engulfment of cell debris. Recently, extracellular zinc has been shown to promote the inflammatory M1 phenotype in microglia through intracellular zinc accumulation and reactive oxygen species (ROS) generation. PURPOSE: Here, we investigated whether the zinc-enhanced inflammatory M1 phenotype of microglia affects the astrocytic engulfing activity. METHODS: Engulfing activity was assessed in astrocytes treated with microglial-conditioned medium (MCM) from lipopolysaccharide (LPS)-activated or from ZnCl2-pretreated LPS-activated M1 microglia. The effect of zinc on microglia phenotype was also validated using the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and the ROS scavenger Trolox. RESULTS: Although treatment of astrocytes with LPS showed no significant effect on the engulfing activity, MCM from LPS-induced M1 microglia increased the beads uptake by astrocytes. This increased uptake activity was suppressed when MCM from LPS-induced M1 microglia pretreated with ZnCl2 was applied to astrocytes, which was further abolished by the intracellular zinc chelator TPEN and the ROS scavenger Trolox. In addition, expression of P2×7 receptors (P2×7R) was increased in astrocytes treated with MCM derived from M1 microglia but not in the M1 microglia pretreated with ZnCl2. CONCLUSION: These findings suggest that zinc pre-treatment abolishes the ability of LPS-induced M1 microglia to increase the engulfing activity in astrocytes via alteration of astrocytic P2×7R.

8.
Biochem Biophys Res Commun ; 507(1-4): 476-483, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30466781

RESUMO

Activated microglia exhibit two opposite activation states, the inflammatory M1 and the anti-inflammatory M2 activation states. In the mammalian brain, ischemia elicits a massive release of zinc from hippocampal neurons, and the extracellular zinc primes M1 microglia-by inducing reactive oxygen species (ROS) generation-to enhance their production of proinflammatory cytokines, which ultimately results in short-term spatial memory impairment. Here, we examined how peridinin, a carotenoid in dinoflagellates, affects the zinc-enhanced inflammatory M1 phenotype of microglia. Treatment of microglia with 30-300 ng/mL peridinin caused a dose-dependent attenuation of zinc-enhanced interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNFα) secretion when M1 activation was induced by lipopolysaccharide exposure. Moreover, peridinin inhibited the increase in ROS levels in zinc-treated microglia without directly interacting with zinc. Notably, when mice were administrated peridinin (20-200 ng/animal) intracerebroventricularly 5 min before cerebral ischemia-reperfusion, the peridinin treatment not only suppressed the increase in expression of IL-1ß, IL-6, TNFα, and the microglial M1 surface marker CD16/32, but also protected the mice against ischemia-induced short-term spatial-memory impairment. Our findings suggest that peridinin prevents extracellular zinc-enhanced proinflammatory cytokine secretion from M1 microglia by inhibiting the increase in microglial ROS levels, and that this anti-inflammatory effect of peridinin might result in protection against deficits in short-term spatial memory.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/fisiopatologia , Carotenoides/uso terapêutico , Inflamação/patologia , Microglia/patologia , Substâncias Protetoras/farmacologia , Memória Espacial/efeitos dos fármacos , Zinco/efeitos adversos , Animais , Carotenoides/química , Carotenoides/farmacologia , Quelantes/farmacologia , Cognição/efeitos dos fármacos , Citocinas/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
9.
Metallomics ; 10(10): 1501-1509, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30206632

RESUMO

Microglia, the resident immune cells of the central nervous system, can display a pro-inflammatory M1 phenotype or an anti-inflammatory M2 phenotype. Arginase (Arg)-1 expressed in interleukin-4 (IL-4)-induced M2 microglia reduces nitric oxide (NO) production by competing with inducible NO synthase for l-arginine, which contributes to the attenuation of brain inflammation. Although previous studies have indicated that brain zinc promotes M1 activation, the effect of zinc on M2 microglial activation remains to be determined. In the present study, murine primary microglia treated with 10 ng mL-1 IL-4 exhibited increased Arg-1 mRNA expression and levels of intracellular free zinc. Chelation of this increased intracellular free zinc by the cell permeable zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) aggravated the IL-4-induced mRNA expression and enzymatic activity of Arg-1. However, the cell impermeable zinc chelator CaEDTA had no effect on Arg-1 expression or cytosolic levels of free zinc in IL-4-induced M2-polarized microglia. Furthermore, treatment with IL-4 resulted in upregulation of phagocytic activity in microglia, while administration of TPEN abolished IL-4-induced phagocytic activity. Moreover, this effect was reversed vial-arginine supplementation. These findings suggest that IL-4 induces an increase in intracellular free zinc in microglia, which may act as a negative regulator of IL-4-induced Arg-1 expression, and that such negative regulation is essential for microglial phagocytic activity.


Assuntos
Arginase/metabolismo , Regulação da Expressão Gênica , Interleucina-4/metabolismo , Microglia/efeitos dos fármacos , Zinco/farmacologia , Animais , Arginase/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
10.
Chemistry ; 19(9): 3006-16, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23307443

RESUMO

A diamondoid porous organic salt (d-POS) composed of 8-hydroxyquinoline-5-sulfonic acid (HQS) and triphenylmethylamine (TPMA) shows reversible structure contraction and expansion ("breathing") in response to guest desorption and adsorption. This flexible structure is designed hierarchically by utilizing two different types of hydrogen bonds. X-ray crystallographic analysis reveals that the two types of hydrogen bonds are formed separately to play respective roles for constructing the d-POS. The strong charge-assisted hydrogen bond between the sulfonate anion of HQS and the ammonium cation of TPMA serves as a static node to provide a supramolecular cluster for a building block. In contrast, the complementary neutral hydrogen bond between the hydroxyl and quinolyl groups of HQS acts as a dynamic linker to connect the clusters. Consequently, these two types of hydrogen bonds yield the d-POS with one-dimensional channels through the formation of diamondoid networks. We clarify that the d-POS undergoes dynamic structure transformation that originates in the cleavage and reformation of the complementary neutral hydrogen bond during guest desorption and adsorption. From the comparative studies, it is also demonstrated that applying the complementary neutral hydrogen bond in the d-POS provides significant advantages in terms of the responsivity of the structure over applying other weak noncovalent interactions for the connection of the clusters. Furthermore, the resultant d-POS also modulates fluorescent profiles dynamically responsive to guest adsorption and desorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...