Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 27(12): 2084-2093, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30284332

RESUMO

Cooperative protein folding requires distant regions of a protein to interact and provide mutual stabilization. The mechanism of this long-distance coupling remains poorly understood. Here, we use T4 lysozyme (T4L*) as a model to investigate long-range communications across two subdomains of a globular protein. T4L* is composed of two structurally distinct subdomains, although it behaves in a two-state manner at equilibrium. The subdomains of T4L* are connected via two topological connections: the N-terminal helix that is structurally part of the C-terminal subdomain (the A-helix) and a long helix that spans both subdomains (the C-helix). To understand the role that the C-helix plays in cooperative folding, we analyzed a circularly permuted version of T4L* (CP13*), whose subdomains are connected only by the C-helix. We demonstrate that when isolated as individual fragments, both subdomains of CP13* can fold autonomously into marginally stable conformations. The energetics of the N-terminal subdomain depend on the formation of a salt bridge known to be important for stability in the full-length protein. We show that the energetic contribution of the salt bridge to the stability of the N-terminal fragment increases when the C-helix is stabilized, such as occurs upon folding of the C-terminal subdomain. These results suggest a model where long-range energetic coupling is mediated by helix stabilization and not specific tertiary interactions.


Assuntos
Bacteriófago T4/enzimologia , Muramidase/metabolismo , Estabilidade Enzimática , Muramidase/química , Muramidase/isolamento & purificação , Conformação Proteica , Dobramento de Proteína , Proteólise
2.
J Biol Chem ; 292(38): 15636-15648, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28754692

RESUMO

Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas/química , Alcinos/química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição , Dobramento de Proteína
3.
Biophys J ; 95(1): 352-65, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18339751

RESUMO

We have developed a continuous-flow mixing device suitable for monitoring bioconformational reactions at the single-molecule level with a response time of approximately 10 ms under single-molecule flow conditions. Its coaxial geometry allows three-dimensional hydrodynamic focusing of sample fluids to diffraction-limited dimensions where diffusional mixing is rapid and efficient. The capillary-based design enables rapid in-lab construction of mixers without the need for expensive lithography-based microfabrication facilities. In-line filtering of sample fluids using granulated silica particles virtually eliminates clogging and extends the lifetime of each device to many months. In this article, to determine both the distance-to-time transfer function and the instrument response function of the device we characterize its fluid flow and mixing properties using both fluorescence cross-correlation spectroscopy velocimetry and finite element fluid dynamics simulations. We then apply the mixer to single molecule FRET protein folding studies of Chymotrypsin Inhibitor protein 2. By transiently populating the unfolded state of Chymotrypsin Inhibitor Protein 2 (CI2) under nonequilibrium in vitro refolding conditions, we spatially and temporally resolve the denaturant-dependent nonspecific collapse of the unfolded state from the barrier-limited folding transition of CI2. Our results are consistent with previous CI2 mixing results that found evidence for a heterogeneous unfolded state consisting of cis- and trans-proline conformers.


Assuntos
Microfluídica/instrumentação , Micromanipulação/instrumentação , Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Microfluídica/métodos , Micromanipulação/métodos
4.
J Phys Chem B ; 110(44): 22103-24, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17078646

RESUMO

We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 A. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted.


Assuntos
Algoritmos , DNA/química , Transferência Ressonante de Energia de Fluorescência , Simulação por Computador , Lasers , Conformação de Ácido Nucleico , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...