Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32020916

RESUMO

To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.

2.
Astrophys J ; Volume 817(No 1)2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-32020923

RESUMO

The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ~50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ~6 keV plasma. This temperature is ΔkT ~2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, N H ~1024 H cm-2, marked one of the highest values ever observed for η Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

3.
Anal Sci ; 27(6): 591-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21666355

RESUMO

We report on trypsin-stabilized fluorescent gold nanoclusters (Au NCs) for the sensitive and selective detection of Hg(2+) ions. The Au NCs have an average size of 1 nm and show a red emission at 645 nm. The photostable properties of the trypsin-stabilized Au NCs were examined, and their photochemical stability was found to be similar to that of CdSe quantum dots. The fluorescence was particularly quenched by Hg(2+), and therefore the Au NCs can be used as fluorescent sensors for sensitive and selective Hg(2+) detection to a detection limit of 50 ± 10 nM and the quantitative detection of Hg(2+) in wide and low concentration range of 50-600 nM.


Assuntos
Fluorescência , Ouro/química , Mercúrio/análise , Nanopartículas Metálicas/química , Tripsina/química , Compostos de Cádmio/química , Tamanho da Partícula , Fotoquímica , Pontos Quânticos , Compostos de Selênio/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...