Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 251, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28381075

RESUMO

The aim of this research is the thermostructural study of Cu-Ti, Cu-Ti 1 vol% multiwall carbon nanotubes (MWCNTs) and Cu-Ti 3 vol% MWCNTs. Several investigation techniques were used to achieve this objective. Dilatometric data show that the coefficient of thermal expansion of the nanocomposite containing less multiwall carbon nanotubes is linear and small. The same nanocomposite exhibits regular heat transfer and weak mass exchange with the environment. Raman spectroscopy shows that the nanocomposite with more MWCNTs contains more defects. This implies that the carbon nanotubes have better dispersion in Cu-Ti 1 vol% MWCNTs. Infrared spectroscopy reveals that Cu-Ti 1 vol% MWCNTs has better crystallinity than Cu-Ti 3 vol% MWCNTs.

2.
Nanoscale Res Lett ; 12(1): 98, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28181161

RESUMO

The set of composite materials that consist of micro/nanocellulose and complex K2Eu(MoO4)(PO4) luminescent oxide particles was prepared. The composites were studied by means of scanning electron microscopy, XRD analysis, dilatometry, differential scanning calorimetry and thermogravimetric analysis, and dielectric and luminescence spectroscopy.Dependencies of density, crystallinity, relative extension, thermal extension coefficient, dielectric relaxation parameters, intensity and shape of photoluminescence bands on temperature, and content of oxide component were studied. The structure of the composite without oxide is formed by grains of nearly 5-50 µm in size (crystallinity is about ~56%). Structure of the micro/nanocellulose samples which contain oxide particles is similar, but the cellulose grains are deformed by oxide particles. Dependencies of the abovementioned properties on temperature and oxide content were analyzed together with data on the size distribution of oxide particles for the samples for various oxide and molecules of water concentrations.

3.
Nanoscale Res Lett ; 11(1): 97, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26907455

RESUMO

The aim of this research is to study the influence of the multi-walled carbon nanotubes (MWCNTs) on the thermomechanical and structural properties of high-density polyethylene. Several, complementary experimental techniques were used, namely, dilatometry, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and infrared (IR) spectroscopy. Dilatometry data showed that nanocomposites exhibit anisotropic behavior, and intensity of the anisotropy depends on the MWCNT concentration. The shapes of the dilatometric curves of the nanocomposites under study differ significantly for the radial and longitudinal directions of the samples. DSC results show that MWCNTs weekly influence calorimetry data, while Raman spectra show that the I D/I G ratio decreases when MWCNT concentration increases. The IR spectra demonstrate improvement of the crystallinity of the samples as the content in MWCNTs rises.

4.
Nanoscale Res Lett ; 11(1): 78, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26858160

RESUMO

Nanocomposite materials of the Fe-Cu system with/without small addition of carbon nanotubes have been synthesized by mechanochemical activation of elemental Fe and Cu powders in a high-energy planetary ball mill and have been examined by the X-ray diffraction method, SEM and the thermopower methods; the tensile strength of the materials obtained has been estimated. The metastable (Fe, Cu) supersaturated solid solution is formed in the Fe-Cu nanocomposites during milling process. The coherent scattering block size of the materials obtained is decreased with increase of milling time. The duration of mechanochemical activation affects the physical properties of nanocomposites studied. Addition of a small amount of nanotubes into Fe-Cu charge results in a significant increase of strength of the Fe-Cu (4:1) + CNT nanocomposite materials (NCMs) obtained.

5.
Nanoscale Res Lett ; 10: 170, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977649

RESUMO

The objective of this work is a dilatometric study of Al + 0.1% of multiwall carbon nanotubes nanocomposite material (NCM) in three directions: X - parallel to the rolling direction; Y - perpendicular to the rolling direction and (Z) perpendicular to the ribbon plane. NCM specimens were made in the form of a 0.1-mm-thick ribbon. The temperature range used for measurements was 20°C to 600°C. The obtained results show that presence of nanotubes affects the thermal expansion coefficient (TEC) measured in different directions. αx(T) and αy(T) - TEC plots as a function of temperature along X and Y directions, respectively - have substantially the same shape and overlap in the area of 400°C. The expansion along X-axis becomes greater than along Y-axis below this temperature value. It is clear that the coefficient αz(T) is lower than αx(T) and αy(T) over the entire temperature range. The expansion along Z-axis is smaller compared to that along X- and Y-axes. This behaviour suggests that there is a strong interatomic interaction along this direction (Z). αz(T) becomes monotonous and constant and is equal to 8 × 10(-6)°C(-1) at temperatures above 300°C. Such order of magnitude had not been obtained in earlier studies of aluminium alloys. The obtained TEC shows high anisotropy, which grows with the increase of temperature. The heat flow (differential scanning calorimetry, (DSC)) of Al + 0.1% carbon nanotubes (CNT) NCM is more intense compared to that of pure aluminium produced in similar conditions. The two representative curves have similar shape and are almost entirely overlapped. The thermogravimetry results confirm those of DSC. The Raman spectrum of this nanomaterial shows that intensity of G and D bonds is significantly increased compared to that of the pure material. The infrared diagram also confirms that in this case the mentioned bonds are more intensive NCM. The tensile strength measurements (σB) of the studied NCM also demonstrate that its value increases from 140 ± 10 MPa for Al without nanotubes to 200 ± 10 MPa for NCM.

6.
Nanoscale Res Lett ; 9(1): 213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24872801

RESUMO

In this work, we studied a nanocomposite material made from fluoroplastic which contains 20 wt.% multi-walled nanotubes. In order to complete the present work, we have used different thermodynamic and mechanical techniques. The introduction of nanotubes in the F4 polymer matrix has completely changed the tribological and thermodynamic properties of the studied nanocomposite material. The compression strength becomes 20% higher than that of the F4 polymer matrix. Meanwhile the wear resistance achieves an order of magnitude 100 times greaterthan that of F4. Moreover, a friction coefficient is about 25% to 30% lower than that of a similar material and especially that of F4 material. Differential scanning calorimetric study showed that the glassy phase transition appears at about 330°C, which confirms that the degradation of the studied nanocomposite occurs at relatively higher temperature. This result confirms the one concerning the change in tribological properties. Dilatometric study revealed that the thermal expansion coefficient has been increased. The observed relative elongation measurement change depends on the direction along which the measurement has been done and confirms, in turn, the anisotropic character of the studied material. These results suggest that the metallic materials could be replaced by nanocomposite compounds which present good physical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...