Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906944

RESUMO

Pyrones and their aromatic ring-fused derivatives have gained significant attention due to their diverse biological activities and potential as foundational frameworks for advanced materials. In this paper, we describe a proficient approach for the preparation of azuleno[1,2-c]pyran-1-ones, which are difficult to produce by using conventional methods. The synthesis was achieved through BroÌ·nsted acid-mediated cyclization of 2-azulenylalkynes. The structural and optical properties of azuleno[1,2-c]pyran-1-ones were characterized by single-crystal X-ray analysis, NMR, UV/vis, and fluorescence spectroscopies. Under acidic conditions, these compounds displayed notable spectral alterations and emission, distinct from their spectra in neutral medium. These results suggest that azuleno[1,2-c]pyran-1-ones hold great potential for applications in organic electronic materials and fluorescent pH sensors.

2.
Bioelectromagnetics ; 44(7-8): 204-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37157157

RESUMO

Pseudogout is crystalline arthritis. It has a similar clinical picture to that of gout, and it is difficult to distinguish the two diseases using conventional analysis methods. However, it is important to identify the different crystals responsible for these two cases because the treatment strategies are different. In a previous study, we reported magnetic orientation of monosodium urate (MSU) crystals, which are the causative agent of gout, at the permanent magnet level. In this study, we investigated the effect of an applied magnetic field on calcium pyrophosphate (CPP) crystals, which are the causative agent of pseudogout, and the difference in the magnetic responses of CPP and MSU crystals. We found that the CPP crystals were oriented in a magnetic field on milli-Tesla order because of the anisotropy of the diamagnetic susceptibility. In addition, the CPP crystals exhibited different anisotropic magnetic properties from those of MSU crystals, which led to a characteristic difference between the orientations of the two crystals. That is, we found that the causative agents of gout and pseudogout responded differently to a magnetic field. This report suggests that the discrimination between CPP and MSU by optical measurements is possible by application of magnetic fields appropriately. © 2023 Bioelectromagnetics Society.


Assuntos
Condrocalcinose , Gota , Humanos , Condrocalcinose/diagnóstico , Ácido Úrico/análise , Ácido Úrico/química , Pirofosfato de Cálcio/análise , Gota/diagnóstico , Fenômenos Magnéticos
3.
J Phys Chem B ; 125(11): 2987-2993, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33724819

RESUMO

Several fluorescence patterns derived from the excimer states of perylene have been reported, but most of these have been obtained from rigid forms such as crystals or for perylene embedded in hard polymers. We observed perylene excimer emission on absorption of water by a poly-N-isopropylacrylamide gel containing perylene molecules, which were not fixed to the gel framework by chemical bonding. We propose that this emission arises because the hydrophobic perylene molecules cannot dissolve in water and form aggregates. The perylene aggregation was quickly lost on dehydration of the gel, and the luminescence reverted to that of the monomer. In a dehydrated environment, perylene was rapidly dispersed in the gel network. In other words, solid-liquid phase separation of perylene was induced by uptake of water into the gel, and perylene dissolved in the gel on dehydration. Because the outside of the gel is always in an aqueous environment, perylene will remain semipermanently in the gel. Therefore, monomer emission and excimer emission can be switched reversibly and repeatedly.

4.
J Phys Chem Lett ; 11(1): 21-25, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809046

RESUMO

An ionic liquid, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA TFSI), was transformed from a liquid phase to another fluidic phase by application of the threshold magnetic field at constant temperature (T). The magnetic-field-induced (MFI) phase transformation was detected by the electric potential generated between two Pt electrodes set to the bottom and upper parts in a TMPA TFSI liquid during sweep of the magnetic field (B). The magnetic susceptibility and Verdet constant of TMPA TFSI also were slightly changed over 3 T. The MFI phase formation was almost completed within 3 h after TMPA TFSI liquid was exposed to a 6 T magnetic field, as demonstrated by the melting behavior of TMPA TFSI solid frozen instantaneously under 6 T. Multivariate analysis of the Raman spectra suggested that the MFI transformation should be associated with the conformational change of the transoid-to-cisoidlike species of TFSI ions. A B-T phase diagram of TMPA TFSI is proposed.

5.
Sci Rep ; 9(1): 7489, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097744

RESUMO

The influence of an applied magnetic field on the formation of carbon materials from coal tar pitch is investigated. Under an applied magnetic field, crystallites in a mesophase resembling liquid crystals are magnetically oriented during the carbonization process. Compared with that under a nonmagnetic field, carbonized coal tar pitch under a strong magnetic field of 10 T, generated by a superconducting magnet, has a highly oriented structure of carbon crystallites. The orientation of samples prepared under 2 T, which can easily be supplied by an electromagnet, was insufficient. Activation by potassium hydroxide is effective for affording a precursor for activated carbon. The activated carbon obtained under a strong magnetic field has a unique adsorption ability, which arises from its increase in relative surface area and total pore volume compared with those of an activated carbon sample prepared from a precursor produced under zero magnetic field. The precursor carbonized under a magnetic field of 10 T contains a larger number of crystallites than that carbonized under a 0-T magnetic field, which leads to high-performance activated carbon.

6.
Langmuir ; 33(3): 680-684, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045538

RESUMO

As-synthesized [Zn2(Oxac) (Taz)2]·(H2O)2.5, referred to as ZOTW2.5, was prepared from aqueous methanol solutions of Zn5(CO3)2(OH)6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW2.5 was pretreated at 383 K and 1 mPa for tpt h, ZOTWx(tpth). ZOTWx(≥3h) showed a type I adsorption isotherm for N2 at 77 K having a saturation amount (Vs) of 180 mg/g, but that pretreated shortly showed only 1/10 in Vs. CO2 was adsorbed at 303 K in sigmoid on nonporous ZOTWx(≤2h) and in Langmuir-type on ZOTWx(≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N2 adsorption on ZOTWx(≤2h)deCO2, degassed after CO2 adsorption on ZOTWx(≤2h), was promoted 5-fold from 180 mg/g on ZOTWx(tpth) and ZOTWx(≥3h)deCO2 up to ca. 1000 mg/g. The interaction of CO2 and H2O molecules in micropores may lead to a new route for micropore formation.

7.
Phys Chem Chem Phys ; 14(2): 981-6, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22124384

RESUMO

The density and intermolecular structure of water in carbon micropores (w = 1.36 nm) are investigated by small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) measurements between 20 K and 298 K. The SAXS results suggest that the density of the water in the micropores increased with increasing temperature over a wide temperature range (20-277 K). The density changed by 10%, which is comparable to the density change of 7% between bulk ice (I(c)) at 20 K and water at 277 K. The results of XRD at low temperatures (less than 200 K) show that the water forms the cubic ice (I(c)) structure, although its peak shape and radial distribution functions changed continuously to those of a liquid-like structure with increasing temperature. The SAXS and XRD results both showed that the water in the hydrophobic nanospaces had no phase transition point. The continuous structural change from ice I(c) to liquid with increasing temperature suggests that water shows negative thermal expansion over a wide temperature range in hydrophobic nanospaces. The combination of XRD and SAXS measurements makes it possible to describe confined systems in nanospaces with intermolecular structure and density of adsorbed molecular assemblies.

8.
J Phys Chem B ; 113(31): 10559-61, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19603755

RESUMO

Large magnetic field effects (MFEs) observed for photoinduced hydrogen abstraction reaction between benzophenone and thiophenol in an ionic liquid (N,N,N,-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)amide, TMPA TFSA) are analyzed by using the stochastic Liouville equation for the first time. The sphere cage model can well reproduce the observed MFEs and the nanoscale heterogeneous structure with a cage radius of 1.8 +/- 0.3 nm, and an effective viscosity in the cage of 1-2 cP is found to be formed in TMPA TFSA.

9.
J Phys Chem B ; 112(45): 14185-92, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18939791

RESUMO

The magnetic field effects (MFEs), caused by the Delta g mechanism, on the photoinduced hydrogen abstraction reaction of benzopheneone with thiophenol were investigated in alcoholic solutions of varying viscosities (eta = 0.55 to 59.2 cP) by a nanosecond laser flash photolysis technique. The escape yield of benzophenone ketyl radicals ( Y) gradually decreased with increasing magnetic field strength ( B) from 0 to 1.6 T. The relative yield observed at 1.6 T, R(1.6 T) = Y(1.6 T)/ Y(0 T), decreased with increasing eta in the range of 0.55 cP < or = eta < or = 5 cP, and then increased with increasing eta in the range of 5 cP < eta < or = 55.3 cP. When eta was higher than 55.3 cP, the R(1.6 T) value became 1.0, and MFEs were completely quenched. The observed eta dependence of the MFEs was analyzed by the stochastic Liouville equation (SLE), in which the effects of spin-orbit coupling by a heavy atom such as sulfur were taken into account. The observed MFEs were reproduced fairly well by the SLE analysis. The diffusion coefficients of the radicals obtained by the SLE were about three times smaller than those expected from the macroscopic solvent viscosities. One can probe the microviscosity in the vicinity of the radical pairs by observing MFEs on the present photochemical reaction system.

10.
J Phys Chem B ; 112(11): 3375-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18298111

RESUMO

The magnetic field effects (MFEs) on photoinduced hydrogen abstraction reactions between benzophenone and thiophenol in an ionic liquid, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl) imide (TMPA TFSI), were studied by a nanosecond laser flash photolysis technique under ultrahigh fields of up to 28 T. Extremely large and anomalous stepwise MFEs were observed for the first time. The escape yield of benzophenone ketyl radical decreased with increasing magnetic field strength (B) at 0 T

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...