Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 38(9): 5146-66, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21978060

RESUMO

PURPOSE: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution. METHODS: The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID). First, a number of complementary machine QA tests were developed to monitor the correct interplay between the accelerating/decelerating gantry, the variable dose rate and the MLC position, straining the delivery to the maximum allowed limits. Second, a systematic approach to the validation of the dose calculation for RA was adopted, starting with static gantry and RA specific static MLC shapes and gradually moving to dynamic gantry, dynamic MLC shapes. RA plans were then optimized on a series of artificial structures created within the homogeneous Octavius phantom and within a heterogeneous lung phantom. These served the double purpose of testing the behavior of the optimization algorithm (PRO) as well as the precision of the forward dose calculation. Finally, patient QA on a series of clinical cases was performed with different methods. In addition to the well established in-phantom QA, we evaluated the portal dosimetry solution within the Varian approach. RESULTS: For routine machine QA, the "Snooker Cue" test on the EPID proved to be the most sensitive to overall problem detection. It is also the most practical one. The "Twinkle" and "Sunrise" tests were useful to obtain well differentiated information on the individual treatment delivery components. The AAA8.9 dose calculations showed excellent agreement with all corresponding measurements, except in areas where the 2.5 mm fixed fluence resolution was insufficient to accurately model the tongue and groove effect or the dose through nearly closed opposing leafs. Such cases benefited from the increased fluence resolution in AAA10.0. In the clinical RA fields, these effects were smeared out spatially and the impact of the fluence resolution was considerably less pronounced. The RA plans on the artificial structure sets demonstrated some interesting characteristics of the PRO8.9 optimizer, such as a sometimes unexpected dependence on the collimator rotation and a suboptimal coverage of targets within lung tissue. Although the portal dosimetry was successfully validated, we are reluctant to use it as a sole means of patient QA as long as no gantry angle information is embedded. CONCLUSIONS: The all-in validation program allows a systematic approach in monitoring the different levels of RA treatments. With the systematic approach comes a better understanding of both the capabilities and the limits of the used solution. The program can be useful for implementation, but also for the validation of major upgrades.


Assuntos
Radioterapia de Intensidade Modulada/normas , Algoritmos , Humanos , Imagens de Fantasmas , Controle de Qualidade , Radiometria , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
2.
Eur J Radiol ; 67(2): 348-356, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17826937

RESUMO

The purpose of the study was to evaluate image quality (IQ) associated with vascular radiology and vascular surgery procedures in Belgium and to determine reference values for future image quality assessment. IQ was evaluated with the CD-DISC contrast-detail phantom. This circular PMMA phantom contains 225 holes with different diameter and depth, to quantify resolution and contrast. Images of the phantom were acquired for both fluoroscopy and subtraction images on 21 systems. Three observers evaluated the images by determining the threshold contrast visible for every diameter. This results in contrast-detail curves and image quality figures. We observed a large difference in IQ between the centres. No straightforward correlation could be found with radiation dose or other exposure settings. A comparison was made with the image quality evaluation of the systems performed with the TOR[18FG] phantom for fluoroscopy. There is no clear correlation observed between the results of the CD-DISC phantom and the TOR phantom. However, systems with very poor or very good image quality could be detected by both phantoms. An important result is that a 75th percentile reference contrast-detail curve could be proposed to separate the best centres from these with poorer quality. Some centres had also a significantly better image quality than others. Therefore, we introduced also a 25th percentile. Centres with IQ above this value are recommended to lower the dose and work with acceptable rather than excellent image quality. The CD-DISC phantom thus allows to guide the image quality setting.


Assuntos
Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Radiografia Intervencionista , Doenças Vasculares/diagnóstico por imagem , Doenças Vasculares/cirurgia , Angiografia Digital , Fluoroscopia , Humanos , Valores de Referência , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...