Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 188: 106655, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642113

RESUMO

Fetal alcohol spectrum disorder (FASD) includes neuropsychiatric disturbances related to gestational and lactational ethanol exposure. Available treatments are minimal and do not modulate ethanol-induced damage. Developing animal models simulating FASD is essential for understanding the underlying brain alterations and searching for efficient therapeutic approaches. The main goal of this study was to evaluate the effects of early and chronic cannabidiol (CBD) administration on offspring exposed to an animal model of FASD. Ethanol gavage (3 g/kg/12 h, p.o.) was administered to C57BL/6 J female mice, with a previous history of alcohol consumption, between gestational day 7 and postnatal day 21. On the weaning day, pups were separated by sex, and CBD administration began (30 mg/kg/day, i.p.). After 4-6 weeks of treatment, behavioral and neurobiological changes were analyzed. Mice exposed to the animal model of FASD showed higher anxiogenic and depressive-like behaviors and cognitive impairment that were evaluated through several experimental tests. These behaviors were accompanied by alterations in the gene, cellular and metabolomic targets. CBD administration normalized FASD model-induced emotional and cognitive disturbances, gene expression, and cellular changes with sex-dependent differences. CBD modulates the metabolomic changes detected in the hippocampus and prefrontal cortex. Interestingly, no changes were found in mitochondria or the oxidative status of the cells. These results suggest that the early and repeated administration of CBD modulated the long-lasting behavioral, gene and protein alterations induced by the FASD model, encouraging the possibility of performing clinical trials to evaluate the effects of CBD in children affected with FASD.


Assuntos
Canabidiol , Transtornos do Espectro Alcoólico Fetal , Humanos , Gravidez , Animais , Camundongos , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Etanol
2.
Pharmacol Res ; 163: 105211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010423

RESUMO

Mitochondrial dysfunction - including increased apoptosis, calcium and protein dyshomeostasis within the organelle, and dysfunctional bioenergetics and oxidative status - is a common, early feature in all the major neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, the exact molecular mechanisms that drive the organelle to dysfunction and ultimately to failure in these conditions are still not well described. Different authors have shown that inorganic polyphosphate (polyP), an ancient and well-conserved molecule, plays a key role in the regulation of mitochondrial physiology under basal conditions. PolyP, which is present in all studied organisms, is composed of chains of orthophosphates linked together by highly energetic phosphoanhydride bonds, similar to those found in ATP. This polymer shows a ubiquitous distribution, even if a high co-localization with mitochondria has been reported. It has been proposed that polyP might be an alternative to ATP for cellular energy storage in different organisms, as well as the implication of polyP in the regulation of many of the mitochondrial processes affected in AD and PD, including protein and calcium homeostasis. Here, we conduct a comprehensive review and discussion of the bibliography available regarding the role of polyP in the mitochondrial dysfunction present in AD and PD. Taking into account the data presented in this review, we postulate that polyP could be a valid, innovative and, plausible pharmacological target against mitochondrial dysfunction in AD and PD. However, further research should be conducted to better understand the exact role of polyP in neurodegeneration, as well as the metabolism of the polymer, and the effect of different lengths of polyP on cellular and mitochondrial physiology.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Polifosfatos/metabolismo , Amiloide/metabolismo , Animais , Apoptose , Sinalização do Cálcio , Metabolismo Energético , Homeostase , Humanos , Inflamação/metabolismo , Agregação Patológica de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...