Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contracept Reprod Med ; 9(1): 20, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705979

RESUMO

BACKGROUND: Serial serum hormone measurements and transvaginal ultrasound are reliable measures to predict ovulation. These measures are inconvenient and expensive therefore, basal body temperature charting (BBT) and urine ovulation predictor kits (OPK) for luteinizing hormone are often used to determine the 6-day fertile window. However, BBT does not clearly change until 1-2 days after ovulation. Additionally, while OPK can indicate positivity prior to ovulation, false readings are common. A novel alternative approach involves measuring electrolyte trends in cervical mucus using electrical impedance spectroscopy. Cervical mucus electrolyte measurements are associated with hormone level changes during the menstrual cycle. The purpose of this study was to compare the effectiveness of cervical mucus electrical impedance and basal body temperature. We sought to determine if cervical mucus electrolyte measurements provided improved detection of the ovulation day and therefore, improve fertility timing for women. METHODS: 14 healthy women between 18 and 44 years of age with normal menstrual cycles were enrolled in the Observational Study. Participants measured BBT and cervical mucus electrical impedance daily for 3 menstrual cycles using Kegg (Lady Technologies Inc. San Francisco, California, USA). Ovulation date for each cycle was confirmed by measuring hormone levels in urine and serum, and by vaginal ultrasound. RESULTS: Electrical impedance was significantly different between the follicular phase versus ovulatory date (p = 0.007) and between the luteal phase versus the ovulatory date (p = 0.007). A significant difference in the rate of change of cervical impedance measurements in the pre-ovulatory follicular phase was found compared to BBT (p = 0.0225). The sensitivity (+ 7.14%), specificity (+ 20.35%), and accuracy (+ 17.59) to determine the 1-day fertility window was significantly higher using cervical mucus impedance compared to BBT. CONCLUSIONS: BBT is considered unreliable for evaluating ovulatory function. Cervical mucus electrical impedance offers a novel measure of electrolyte changes associated with hormone levels. We report that pre-ovulatory electrical impedance patterns demonstrated higher sensitivity, specificity, and accuracy for determining the fertility window when compared to BBT. These findings suggest that changes in electrical impedance may provide an accurate method for predicting ovulation and for measuring ovulatory function.

2.
Front Bioeng Biotechnol ; 11: 1122456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814717

RESUMO

Introduction: The central pathologic feature of osteoarthritis (OA) is the progressive loss of articular cartilage, which has a limited regenerative capacity. The TGF-ß1 inhibitor, losartan, can improve cartilage repair by promoting hyaline rather that fibrous cartilage tissue regeneration. However, there are concerns about side effects associated with oral administration and short retention within the joint following intra-articular injections. To facilitate local and sustained intra-articular losartan delivery we have designed an injectable peptide amphiphile (PA) nanofiber that binds losartan. The aims of this study are to characterize the release kinetics of losartan from two different PA nanofiber compositions followed by testing pro-regenerative bioactivity on chondrocytes. Methods: We tested the impact of electrostatic interactions on nanostructure morphology and release kinetics of the negatively charged losartan molecule from either a positively or negatively charged PA nanofiber. Subsequently, cytotoxicity and bioactivity were evaluated in vitro in both normal and an IL-1ß-induced OA chondrocyte model using ATDC5. Results: Both nanofiber systems promoted cell proliferation but that the positively-charged nanofibers also significantly increased glycosaminoglycans production. Furthermore, gene expression analysis suggested that losartan-encapsulated nanofibers had significant anti-inflammatory, anti-degenerative, and cartilage regenerative effects by significantly blocking TGF-ß1 in this in vitro system. Discussion: The results of this study demonstrated that positively charged losartan sustained-release nanofibers may be a novel and useful treatment for cartilage regeneration and OA by blocking TGF-ß1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...