Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(12): 3188-3198, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38868816

RESUMO

The synthesis of drug-loaded PLGA nanoparticles through nanoprecipitation in solvent/antisolvent mixtures is well reported but lacks clarity in explaining drug loading mechanisms and the prediction of efficiency of drug entrapment. Various methods using physical parameters such as log P and solid-state drug-polymer solubility aim to predict the intensity of drug-polymer interactions but lack precision. In particular, the zero-enthalpy method for drug/polymer solubility may be intrinsically inaccurate, as we demonstrate. Conventional measurement of loading capacity (LC), expressed in weight ratios, can be misleading for comparing different drugs and we stress the importance of using molar units. This research aims to provide new insights and critically evaluate the established methodologies for drug loading of PLGA nanoparticles. The study employs four model drugs with varying solubilities in solvent/antisolvent mixtures, log P values, and solid-state solubility in PLGA: ketoprofen (KPN), indomethacin (IND), sorafenib (SFN), and clofazimine (CFZ). This study highlights that drug loading efficiency is primarily influenced by the drug's solubilities within the solvent system. We emphasise that both kinetic and thermodynamic factors play a role in the behaviour of the system by considering the changes in drug solubility during mixing. The study introduces a pseudo-constant K* to characterise drug-polymer interactions, with CFZ and SFN showing the highest K* values. Interestingly, while IND and KPN have lower K* values, they achieve higher loading capacities due to their greater solubilities, indicating the key role of solubility in determining LC.

2.
Mater Sci Eng C Mater Biol Appl ; 127: 112243, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225883

RESUMO

An effective delivery vehicle of genetic materials to their target site is the key to a successful gene therapy. In many cases, nanoparticles are used as the vehicle of choice and the efficiency of the delivery relies heavily on the physicochemical properties of the nanoparticles. Microfluidics, although being a low throughput method, has been increasingly researched for the preparation of nanoparticles. A range of superior properties were claimed in the literature for microfluidic-prepared platforms, but no evidence on direct comparison of the properties of the nanoparticles prepared by microfluidics and conventional high throughput method exists, leaving the industry with little guidance on how to select effective large-scale nanoparticle manufacturing method. This study used plasmid DNA-loaded PLGA-Eudragit nanoparticles as the model system to critically compare the nanoparticles prepared by conventional and microfluidics-assisted nanoprecipitation. The PLGA-Eudragit nanoparticles prepared by microfluidics were found to be statistically significantly larger than the ones prepared by conventional nanoprecipitation. PLGA-Eudragit nanoparticle prepared conventionally showed higher DNA loading efficiency. Although the DNA-loaded nanoparticles prepared by both methods did not induce significant cytotoxicity, the transfection efficiency was found to be higher for the ones prepared conventionally which has good potential for plasmid delivery. This study for the first time provides a direct comparison of the DNA-loaded nanoparticles prepared by microfluidic and conventional methods. The findings bring new insights into critical evaluation of the selection of manufacturing methods of nanoparticles for future gene therapy.


Assuntos
Microfluídica , Nanopartículas , DNA , Tamanho da Partícula , Polímeros , Transfecção
3.
Int J Pharm ; 584: 119408, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32407942

RESUMO

Using micro-sized channels to manipulate fluids is the essence of microfluidics which has wide applications from analytical chemistry to material science and cell biology research. Recently, using microfluidic-based devices for pharmaceutical research, in particular for the fabrication of micro- and nano-particles, has emerged as a new area of interest. The particles that can be prepared by microfluidic devices can range from micron size droplet-based emulsions to nano-sized drug loaded polymeric particles. Microfluidic technology poses unique advantages in terms of the high precision of the mixing regimes and control of fluids involved in formulation preparation. As a result of this, monodispersity of the particles prepared by microfluidics is often recognised as being a particularly advantageous feature in comparison to those prepared by conventional large-scale mixing methods. However, there is a range of practical drawbacks and challenges of using microfluidics as a direct micron- and nano-particle manufacturing method. Technological advances are still required before this type of processing can be translated for application by the pharmaceutical industry. This review focuses specifically on the application of microfluidics for pharmaceutical solid nanoparticle preparation and discusses the theoretical foundation of using the nanoprecipitation principle to generate particles and how this is translated into microfluidic design and operation.


Assuntos
Química Farmacêutica/métodos , Microfluídica/métodos , Nanopartículas/química , Dispositivos Lab-On-A-Chip , Tamanho da Partícula
4.
Int J Nanomedicine ; 12: 4733-4745, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740381

RESUMO

Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase (P≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals' formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher Cmax of 0.74±0.15 µg/mL at a delayed Tmax of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration.


Assuntos
Antraquinonas/efeitos adversos , Antraquinonas/farmacocinética , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Antraquinonas/administração & dosagem , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Liofilização , Masculino , Microscopia Eletrônica de Varredura , Nanopartículas/química , Tamanho da Partícula , Povidona/química , Ratos , Suspensões/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...