Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(9): 8303-8319, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910964

RESUMO

To evaluate the potential role of in situ formed Sr-Ti-O species as a ferroelectric component able to enhance the photocatalytic properties of an adjacent TiO2 semiconductor, Cu-doped/graphene oxide (GO)/TiO2 nanotubes (TiNTs) composites (with 0.5 wt % Cu and 1.0 wt % GO) have been synthesized while progressive amounts of strontium (up to 1.0 wt %) were incorporated at the surface of the composite through incipient wetness impregnation followed by post-thermal treatment at 400 °C. The different resulting photocatalytic systems were then first deeply characterized by means of N2 adsorption-desorption measurements, X-ray diffraction (XRD), UV-vis diffuse reflectance (UV-vis DR), Raman and photoluminescence (PL) spectroscopies, and scanning electron microscopy (SEM) (with energy-dispersive X-ray (EDX) spectroscopy and Z-mapping). In a second step, optimization of the kinetic response of the Sr-containing composites was performed for the formic acid photodegradation under UV irradiation. The Sr-containing Cu/GO/TiNT composites were then fully characterized by electrochemical impedance spectroscopy (EIS) for their dielectric properties showing clearly the implication of polarization induced by the Sr addition onto the stabilization of photogenerated charges. Finally, a perfect correlation between the photocatalytic kinetic evaluation and dielectric properties undoubtedly emphasizes the role of ferroelectric polarization as a very valuable approach to enhance the photocatalytic properties in an adjacent semiconductor.

2.
Scientifica (Cairo) ; 2023: 2741586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647551

RESUMO

Through the electrodeposition technique, toxic metals in wastewater can be removed and deposited on a chosen substrate with excellent selectivity. In this work, we use this technique to extract lead cations from simulated wastewater by using fluorine-doped tin oxide (FTO) substrate at various temperatures. In situ tracking of lead nucleation at advanced stages has been achieved by chronoamperometry. According to the experimental results, the theoretical models developed to study the kinetic growth of lead deposits in 2D and 3D are in good agreement. Nucleation rate and growth rate constants, for example, were found to be strongly influenced by temperature. Cottrell's equation is used to calculate the diffusion coefficient. X-ray diffraction, scanning electron microscopy, and energy-dispersiveX-ray techniques were used to investigate and characterize the lead deposits. The reported results could provide insight into the optimization of electrodeposition processes for heavy metal recovery from wastewater and electronic wastes.

3.
Materials (Basel) ; 15(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36556671

RESUMO

A comparison between lead and silver electrodeposition onto fluorine-doped tin oxide (FTO) electrodes from nitrate solution was investigated in this work. Chronoamperometry has been used as an in situ technique to track the dynamics of the electrodeposition during advanced nucleation phases. The experimental results are correlated with a theoretical evaluation. It has shown that they have a strong correlation with each other. After that, the obtained deposits are characterized and compared as well by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and impedance spectroscopy. The data reflects the effect of the material under investigation on current density, deposition density, and dielectric properties. Additionally, the electrodeposition approach (a two-in-one technique) can be followed in order to make well-controlled thin films that can be used for various purposes in addition to recovering heavy metals from wastewater.

4.
Scientifica (Cairo) ; 2022: 9989282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591557

RESUMO

This work examines the antibacterial and anticandidal activities of zinc oxide nanoparticles (ZNPs) synthesized by high-speed ball milling (HSBM), for short milling times: 0.5, 1, 1.5, and 2 h. First, ZNPs have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and the Zetasizer analyzer. The HSBM results in semispherical ZNPs with some local agglomeration. We found that nanoparticles decrease in size continuously with milling time until they reach about 84% of their original size after only two hours; at 1000 rpm, HSBM reduces ZNP's average size by 6 nm/min. As particle size decreases, the X-ray diffracted patterns become broader and less intense while confirming that no phase transformation has occurred, proving HSBM's effectiveness in synthesizing nanoparticles on a large scale within a short period of time. According to FT-IR analysis, as material sizes change, the polarization charge of the ZNP surface changes as well, creating discrepancies in vibrational frequency, as demonstrated by the shifting of the IR spectra in the 300-600 cm-1 frequency band. Raman responses have also been proven to depend on the particle size. Using the Agar well diffusion method, eleven microorganisms have been tested for the antimicrobial activity of ZNPs. Among the six Gram-negative tested bacteria, S. sonnei showed the largest inhibition zone of about 11.3 ± 0.6 mm with ZNPs measuring 148 nm in size (milled for 2 h), followed by E. coli ATCC 25922. Accordingly, S. aureus was the most susceptible Gram-positive bacteria, with inhibition zone size gradually increasing from 11.8 ± 0.3 mm to 13.5 ± 0.5 mm with decreasing nanoparticle size from 767 to 148 nm, while S. aureus ATCC 25923 was resistant to both milled and unmilled samples. Similar results were seen with candida, all milled ZNPs inhibited C. albicans, followed by C. tropicalis, whereas C. knisei was resistant to all ZNP sizes. In light of microorganism-ZNP interaction mechanisms, the obtained results have been discussed in depth.

5.
Appl Opt ; 54(28): 8293-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26479599

RESUMO

We report a method to obtain a light-controllable dichroism. The main effect is achieved using spiropyran-doped (SP-doped) nematic liquid crystal mixtures. SP molecules exhibit a high solubility in the liquid crystal host, which can vary between 1% and 4% in weight, without destroying the liquid crystalline phase. Due to their elongated shape, SP molecules are oriented along the nematic liquid crystal director. The obtained linear dichroism was measured to be 1.08 with a dichroic ratio of 7.12. Further, a two-direction linear dichroism was obtained by adding a dichroic dye to the mixture. The angle between the two dichroic axes was found to be 11°. Two-direction linear dichroism is also light controllable and can be switched back to one-direction dichroism.

6.
Opt Express ; 23(17): 22922-7, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368259

RESUMO

A new strategy to obtain multicolor lasing from cholesteric liquid crystals is presented. A four layer cell is prepared with three different cholesteric layers and a layer containing a photoluminescent dye. The three cholesteric mixtures are prepared so that their photonic band gaps are partially overlapped. Through this combination, two laser lines are obtained in the same spot under the pumping beam irradiation. Eventually, one of the laser lines can be switched off if an electric field is applied to the first or the last cholesteric layer.

7.
Opt Express ; 22(12): 14705-11, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977566

RESUMO

We present a method to calibrate the light to heat conversion in an aqueous fluid containing nanoparticles. Accurate control of light and heat is of dramatic importance in many fields of science and metal nanoparticles have acquired an increased importance as means to address heat in very small areas when irradiated with an intense light. The proposed method enables to measure the temperature in the environment surrounding nanoparticles, as a function of the exposure time to laser radiation, exploiting the properties of thermochromic cholesteric liquid crystals. This method overcomes the problems of miscibility of nanoparticles in liquid crystals, provides temperature reading at the microscale, since the cholesteric liquid crystal is confined in microdroplets, and it is sensitive to a temperature variation, 28°C-49°C, suitable for biological applications.

8.
Opt Express ; 21(18): 20821-30, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103954

RESUMO

A new type of flexible cholesteric liquid crystal mirror is presented. The simple and effective method for the deposition of a cholesteric mixture on a paper substrate and the particular design of the device give a homogeneous alignment of the cholesteric texture providing mirrors with an intense and uniform light reflectance. A desired polarization state for the reflected light, linear or circular, can be easily obtained varying the thickness and optical anisotropy of the polymer cover film. By using non-azobenzene based photosensitive materials a permanent array of RGB mirrors with high reflectivity can be obtained on the same device. Paper like reflective mirrors are versatile and they can find applications in reflective displays, adaptive optics, UV detectors and dosimeters, information recording, medicine and IR converters.


Assuntos
Colesterol/química , Cristais Líquidos/química , Óptica e Fotônica , Papel , Luz , Polimerização , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...