Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592857

RESUMO

Under stress or in optimum conditions, plants foster a specific guild of symbiotic microbes to strengthen pivotal functions including metabolic regulation. Despite that the role of the plant genotype in microbial selection is well documented, the potential of this genotype-specific microbial assembly in maintaining the host homeostasis remains insufficiently investigated. In this study, we aimed to assess the specificity of the foliar metabolic response of contrasting olive genotypes to microbial inoculation with wet-adapted consortia of plant-growth-promoting rhizobacteria (PGPR), to see if previously inoculated plants with indigenous or exogenous microbes would display any change in their leaf metabolome once being subjected to drought stress. Two Tunisian elite varieties, Chetoui (drought-sensitive) and Chemleli (drought-tolerant), were tested under controlled and stressed conditions. Leaf samples were analyzed by gas chromatography-mass spectrometry (GC-TOFMS) to identify untargeted metabolites. Root and soil samples were used to extract microbial genomic DNA destined for bacterial community profiling using 16S rRNA amplicon sequencing. Respectively, the score plot analysis, cluster analysis, heat map, Venn diagrams, and Krona charts were applied to metabolic and microbial data. Results demonstrated dynamic changes in the leaf metabolome of the Chetoui variety in both stress and inoculation conditions. Under the optimum state, the PGPR consortia induced noteworthy alterations in metabolic patterns of the sensitive variety, aligning with the phytochemistry observed in drought-tolerant cultivars. These variations involved fatty acids, tocopherols, phenols, methoxyphenols, stilbenoids, triterpenes, and sugars. On the other hand, the Chemleli variety displaying comparable metabolic profiles appeared unaffected by stress and inoculation probably owing to its tolerance capacity. The distribution of microbial species among treatments was distinctly uneven. The tested seedlings followed variety-specific strategies in selecting beneficial soil bacteria to alleviate stress. A highly abundant species of the wet-adapted inoculum was detected only under optimum conditions for both cultivars, which makes the moisture history of the plant genotype a selective driver shaping microbial community and thereby a useful tool to predict microbial activity in large ecosystems.

2.
Front Plant Sci ; 13: 1077710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570937

RESUMO

Introduction: Most of elite cultivated grapevine varieties (Vitis vinifera L.), conventionally grafted on rootstocks, are becoming more and more affected by climate changes, such as increase of salinity. Therefore, we revisited the valuable genetic resources of wild grapevines (V. sylvestris) to elaborate strategies for a sustainable viticulture. Methods: Here, we compared physiological and biochemical responses of two salt-tolerant species: a wild grapevine genotype "Tebaba" from our previous studies and the conventional rootstock "1103 Paulsen". Interestingly, our physio-biochemical results showed that under 150mM NaCl, "Tebaba" maintains higher leaf osmotic potential, lower Na+/K+ ratio and a significant peaked increase of polyphenol content at the first 8h of salinity stress. This behavior allowed to hypothesis a drastic repatterning of metabolism in "Tebaba's" roots following a biphasic response. In order to deepen our understanding on the "Tebaba" salt tolerance mechanism, we investigated a time-dependent transcriptomic analysis covering three sampling times, 8h, 24h and 48h. Results: The dynamic analysis indicated that "Tebaba" root cells detect and respond on a large scale within 8h to an accumulation of ROS by enhancing a translational reprogramming process and inducing the transcripts of glycolytic metabolism and flavonoids biosynthesis as a predominate non-enzymatic scavenging process. Afterwards, there is a transition to a largely gluconeogenic stage followed by a combined response mechanism based on cell wall remodeling and lignin biosynthesis with an efficient osmoregulation between 24 and 48 h. Discussion: This investigation explored for the first time in depth the established cross-talk between the physiological, biochemical and transcriptional regulators contributing to propose a hypothetical model of the dynamic salt mechanism tolerance of wild grapevines. In summary, these findings allowed further understanding of the genetic regulation mechanism of salt-tolerance in V. sylvestris and identified specific candidate genes valuable for appropriate breeding strategies.

3.
Toxins (Basel) ; 14(7)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35878203

RESUMO

In this paper, we assessed the ability of two strains of Saccharomyces cerevisiae, in viable and dead forms, to remove ochratoxin A (OTA) from an artificially contaminated synthetic grape juice medium (SGM) (10 µg OTA/L) and a naturally contaminated grape juice (6.64 µg OTA/L). The first strain, named Levulin FB, is a commercial yeast used in making wine. The second, named SC5, is an autochthonous strain isolated from table grapes. OTA concentrations in juices before and after their contact with yeast cells were assessed. A significant decrease in OTA level (p < 0.05) in the SGM medium and in the natural grape juice was observed after 1 h of adding yeast cells (20 g/L) in viable and heat-treated forms. It was inferred that the dead forms of the two strains were more able to eliminate OTA than their viable forms in both media. This study demonstrates the potential application of an autochthonous yeast for the natural decontamination of grape juice from fungal toxins.


Assuntos
Ocratoxinas , Vitis , Vinho , Meios de Cultura , Ocratoxinas/análise , Saccharomyces cerevisiae , Vitis/microbiologia , Vinho/análise
4.
Tunis Med ; 81(8): 535-9, 2003 Aug.
Artigo em Francês | MEDLINE | ID: mdl-14608735

RESUMO

The morbidity and death rate of visceral leishmaniasis (VL) is important. The aim of our study is to find prognosis factors of VL. Two hundred and thirty two children with VL were retrospectively studied. These children were followed in Rabta and Kairouan hospitals between 1985 and 1998. We identify 7 prognosis factors, at the hospital admission, visit delayed more than 56 days, fever during more than 21 days, normal or low temperature, haemorrhagic syndrome hemoglobin rate < 5.5 g/dl, sedimentation rate < 25 mm and hypoalbuminaemia < 30 g/l. The presence of one prognosis factors or more appears to consider amphotericin B as a first-line treatment.


Assuntos
Anfotericina B/uso terapêutico , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/patologia , Sedimentação Sanguínea , Criança , Pré-Escolar , Feminino , Febre , Hemorragia , Humanos , Hipoalbuminemia , Lactente , Leishmaniose Visceral/tratamento farmacológico , Masculino , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...