Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 348: 122683, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702027

RESUMO

Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.


Assuntos
Vetores Genéticos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Linfócitos T/imunologia , Terapia Genética/métodos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...