Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 647: 123536, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37865133

RESUMO

Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.


Assuntos
Química Farmacêutica , Tecnologia de Extrusão por Fusão a Quente , Composição de Medicamentos , Temperatura Alta , Estabilidade de Medicamentos , Portadores de Fármacos/química , Solubilidade
2.
Int J Pharm ; 632: 122571, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587776

RESUMO

Taste refers to those sensations perceived through taste buds on the tongue and oral cavity. The unpleasant taste of drugs leads to the refusal of taking the medicine in the paediatric population. It is widely known that a pharmaceutical product's general acceptability is the result of numerous contributing components such as swallowability, palatability (taste, flavour, texture, and mouthfeel), appearance, ease of administration, and patient characteristics. Multiparticulate as a dosage form is a platform technology for overcoming paediatrics' incapacity to swallow monolithic dosage forms, masking many medications' inherent nasty taste, and overcoming the obstacles of manufacturing a commercially taste masked dosage form. This review will discuss the considerations that must be taken into account to prepare taste masked multiparticulate dosage forms in the best way for paediatric use.


Assuntos
Pediatria , Paladar , Humanos , Criança , Química Farmacêutica , Administração Oral , Percepção Gustatória , Preparações Farmacêuticas , Formas de Dosagem
3.
AAPS PharmSciTech ; 23(8): 288, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271212

RESUMO

Over the past decade, intranasal (IN) delivery has been gaining attention as an alternative approach to conventional drug delivery routes targeting the brain. Carbamazepine (CBZ) is available as an orally ingestible formulation. The present study aims to develop a thermoreversible in situ gelling system for delivering CBZ via IN route. A cold method of synthesis has been used to tailor and optimize the thermoreversible gel composition, using poloxamer 407 (P407) (15-20% w/v) and iota carrageenan (É©-Cg) (0.15-0.25% w/v). The developed in situ gel showed gelation temperatures (28-33°C), pH (4.5-6.5), rheological properties (pseudoplastic, shear thinning), and mucoadhesive strength (1755.78-2495.05 dyne/cm2). The in vitro release study has shown sustained release behavior (24 h) for gel, containing significant retardation of CBZ release. The release kinetics fit to the Korsmeyer-Peppas model, suggesting the non-Fickian diffusion type controlled release behavior. Ex vivo permeation through goat nasal mucosa showed sustained release from the gel containing 18% P407 with the highest cumulative drug permeated (243.94 µg/cm2) and a permeation flux of 10.16 µg/cm2/h. After treatment with CBZ in situ gel, the barrier function of nasal mucosa remained unaffected. Permeation through goat nasal mucosa using in situ gel has demonstrated a harmless nasal delivery, which can provide a new dimension to deliver CBZ directly to the brain bypassing the blood-brain barrier.


Assuntos
Carbamazepina , Poloxâmero , Animais , Poloxâmero/química , Preparações de Ação Retardada , Carragenina , Géis/química , Cabras
4.
Gels ; 8(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323257

RESUMO

The stability of the medicinal product is a major concern in the pharmaceutical industry and health authorities, whose goal is to guarantee that drugs are delivered to patients without loss of therapeutic properties. This study aims to evaluate the effect of environmental conditions and packaging on the stability of paracetamol instant jelly sachets based on both chemical and physical stability. The paracetamol instant jelly was packaged in plastic sachets (packaging 1) and sealed aluminium bags in screw-capped amber glass bottles (packaging 2), which were stored in real-time and accelerated stability chambers for 3 months. Samples were taken out from the chambers and were characterised for appearance, moisture content, texture, viscosity, in vitro drug release, paracetamol content, and 4-aminophenol level at different time points. The real-time storage condition at a lower temperature maintained the stability of the paracetamol instant jelly, while the accelerated condition led to a significant change in the formulation properties. In addition, the proper packaging of paracetamol instant jelly maintained the paracetamol's stability, regardless of environmental conditions, for three months. The results show that the environmental conditions and packaging play a significant role in maintaining paracetamol instant jelly stability.

5.
Int J Pharm ; 587: 119673, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32739388

RESUMO

Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.


Assuntos
Preparações Farmacêuticas , Polímeros , Administração Cutânea , Sistemas de Liberação de Medicamentos , Humanos , Microinjeções , Agulhas , Pele
6.
Drug Deliv ; 23(9): 3639-3652, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27685505

RESUMO

Self-emulsifying drug delivery system (SEDDS) is an isotropic mixture of lipid, surfactant and co-surfactant, which forms a fine emulsion when comes in contact of an aqueous medium with mild agitation. SEDDS is considered as a potential platform for oral delivery of hydrophobic drug in order to overcome their poor and irregular bioavailability challenges. In spite of fewer advantages like improved solubility of drug, bypassing lymphatic transport etc., SEDDS faces different controversial issues such as the use of appropriate terminology (self-microemulsifying drug delivery system; SMEDDS or self-nanoemulsifying drug delivery system; SNEDDS), presence of high amount of surfactant, correlation of in vitro model to in vivo studies, lack of human volunteer study and effect of conversion of SEDDS to final administrable dosage form on pharmacokinetic behavior of the drug. In this review, potential issues or questions on SEDDS are identified and summarized from the pharmacokinetic point of view. Primarily this review includes the conflict between the influences of droplet size, variation in correlation between in vitro lipolysis or ex-vivo intestinal permeation and pharmacokinetic parameters, variation in in vivo results of solid and liquid SEDDS, and potential challenges or limitation of pharmacokinetic studies on human volunteers with orally administered SEDDS. In the past decades, hundreds of in vivo studies on SEDDS have been published. In the present study, only the relevant article on in vivo pharmacokinetic studies with orally administered SEDDS published in past 5-6 years are analyzed for an up to date compilation.


Assuntos
Emulsificantes/química , Emulsões/química , Emulsões/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Tamanho da Partícula , Permeabilidade , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...