Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASAIO J ; 64(2): 261-269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28777137

RESUMO

Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous structure of composite nanofibers containing nylon polymer and B. vulgaris extract. FTIR spectroscopy was endorsed the presence of B. vulgaris extract within the interwoven mat of nanofibers. Also, measurement of mechanical property with cell-laden composite scaffolds approved the desirable similarity between corresponding scaffold and native skin tissue. To our surprise, it was found that compared with nylon nanofibrous scaffold, composite sample containing B. vulgaris extract has lower contact angle indicating a higher hydrophilic surface. After cell seeding process of keratinocyte cells on composite and noncomposite scaffolds, SEM and 3[4,5-dimethylthiazoyl-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays approved higher number of attached cells onto the corresponding composite electrospun membrane. Epidermal gene expression such as involucrin, cytokeratin 10, and cytokeratin 14 was observed through real-time polymerase chain reaction (PCR) technique. Furthermore, immunocytochemistry results (cytokeratin 10 and loricrin) approved that the original property of keratinocytes was strongly preserved using composite scaffold. The corresponding study tries to introduce a new type of natural-based scaffolds for dermal tissue engineering that exhibits an elastic behavior similar to native skin tissue.


Assuntos
Beta vulgaris , Nanofibras/química , Nylons , Pele , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Proliferação de Células , Humanos , Queratinócitos
2.
Mater Sci Eng C Mater Biol Appl ; 75: 653-662, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415512

RESUMO

Employing of the composite electrospun scaffold containing herbal extract in conjugation with co-culturing of cells can open up new window to the design of efficient biomaterials for skin tissue regeneration. Here, we introduce the synergistic effect of composite electrospun nanofibrous scaffold of nylon66 loaded with Beta vulgaris (B. vulgaris) (extract of beet roots, a plants whose widely used in Iranian folk medicine as wound healing medicine) and co-culture of mesenchymal stem-cells (MSCs)-human keratinocyte (H-keratino) differentiation towards epithelial lineage. In vitro biocompatibility was examined through MTT assay and epithelial differentiation checked by real-time PCR and immunocytochemistry (ICC) assay after co-culturing of MSCs and H-keratino on proposed scaffold. Significant enhancement in cell proliferation was detected after cell culturing on the composite type of electrospun scaffold containing B. vulgaris. Moreover, after 14days of co-culturing process, gene expression results revealed that both composite and non-composite nylon66 electrospun scaffold promote epithelial differentiation compared to mono-cell culturing of H-keratino in terms of several markers as Cytokeratin 10, Cytokeratin 14 and Involucrin and ICC of some dermal proteins like Cytokeratin 14 and Loricrin. To the best of our knowledge, findings of this study will introduce new way for the generation of novel biomaterials for the development of current skin tissue engineering.


Assuntos
Beta vulgaris/química , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nylons , Extratos Vegetais , Alicerces Teciduais/química , Linhagem Celular , Técnicas de Cocultura , Células Epiteliais/citologia , Humanos , Queratinócitos/citologia , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Nylons/química , Nylons/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...