Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1254, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623037

RESUMO

Whether it be the passengers' mobility demand in transportation systems, or the consumers' energy demand in power grids, the primary purpose of many infrastructure networks is to best serve this flow demand. In reality, the volume of flow demand fluctuates unevenly across complex networks while simultaneously being hindered by some form of congestion or overload. Nevertheless, there is little known about how the heterogeneity of flow demand influences the network flow dynamics under congestion. To explore this, we introduce a percolation-based network analysis framework underpinned by flow heterogeneity. Thereby, we theoretically identify bottleneck links with guaranteed decisive impact on how flows are passed through the network. The effectiveness of the framework is demonstrated on large-scale real transportation networks, where mitigating the congestion on a small fraction of the links identified as bottlenecks results in a significant network improvement.

2.
Nat Commun ; 11(1): 1616, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265446

RESUMO

The spread of traffic jams in urban networks has long been viewed as a complex spatio-temporal phenomenon that often requires computationally intensive microscopic models for analysis purposes. In this study, we present a framework to describe the dynamics of congestion propagation and dissipation of traffic in cities using a simple contagion process, inspired by those used to model infectious disease spread in a population. We introduce two macroscopic characteristics for network traffic dynamics, namely congestion propagation rate ß and congestion dissipation rate µ. We describe the dynamics of congestion spread using these new parameters embedded within a system of ordinary differential equations, similar to the well-known susceptible-infected-recovered (SIR) model. The proposed contagion-based dynamics are verified through an empirical multi-city analysis, and can be used to monitor, predict and control the fraction of congested links in the network over time.

3.
Sci Rep ; 9(1): 7545, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101843

RESUMO

Previous theoretical and data-driven studies on urban mobility uncovered the repeating patterns in individual and collective human behavior. This paper analyzes the travel demand characteristics of mobility networks through studying a coarse-grained representation of individual trips. Building on the idea of reducing the complexity of the mobility network, we investigate the preserved spatial and temporal information in a simplified representations of large-scale origin-destination matrices derived from more than 16 million taxi trip records from New York and Chicago. We reduce the numerous individual flows on the network into four major groups, to uncover latent collective mobility patterns in those cities. The new simplified representation of the origin-destination matrices leads to categorization of trips into distinctive flow types with specific temporal and spatial properties in each city under study. Collocation of the descriptive statistics of flow types within the two cities suggests the generalizability of the proposed approach. We extract an overall displacement metric from each of the major flows to analyze the evolution of their temporal attributes. The new representation of the demand network reveals insightful properties of the mobility system which could not have been identified from the original disaggregated representation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...