Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(3): 591-601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009361

RESUMO

Smart clothing refers to textiles that can sense an external stimulus by changing their physical properties such as colorimetric and fluorescent fabrics. The pad-dry-curing coloration approach was used to apply a luminous and hydrophobic composite coating onto cellulose-based materials. This novel method includes incorporating phosphor nanoparticles made from lanthanide-doped strontium aluminum oxide (LSAO) into room temperature vulcanizing silicone rubber (RTV). The LSAO nano-sized particles (3-8 nm) must be mixed evenly throughout RTV without aggregation to allow for the formation of a colorless layer onto viscose surface. Pad-dry-curing the film onto viscose cloth worked well at room temperature. The contact angles of the luminous fibers enhanced from 138.6° to 158.2° as the LSAO ratio increased. The antimicrobial and ultraviolet (UV) protection of the LSAO-finished viscose were investigated. The transparent fluorescent film on viscose surface was excited at 367 nm to display an emission peak at 518 nm. According to CIE Lab coordinates and luminescence analyses, the fluorescent viscose fibers showed various colors, including white under visible light, intense green beneath UV device, and greenish-yellow under darkness. The comfort properties of the LSAO-finished viscose were assessed by measuring their bend length and permeability to air. Transmission electron microscopic analysis of LSAO nanoparticles was explored. Energy dispersive x-ray, x-ray fluorescence, and scanning electron microscopy were utilized to describe the spectroscopic outcomes of the treated textiles. The colorfastness of the LSAO-finished viscose fabrics was examined. The coated fabrics exhibited a non-fatigable reversible luminous photochromism in response to UV illumination. RESEARCH HIGHLIGHTS: Multifunctional LSAO@RTV nanocomposite was pad-dry-cured onto viscose textile. Photochromism to green under UV light and greenish-yellow in the dark was detected. Efficient antimicrobial, UV protective, and superhydrophobic activity were observed. The antimicrobial properties were maintained for 24 washing cycles. Pad-dry-cured viscose showed good comfortability and photostability.

2.
ACS Omega ; 8(33): 30374-30388, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636940

RESUMO

This study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.509 cm3/g and 676.059 m2/g, respectively. Adsorption at pH 6 was established to be the best for DOX compared to alkaline solution. Ag-MOF has a good capacity for eliminating DOX (1.85 mmol/g), according to adsorption experiments. From the adsorption results, we can find that Langmuir is the most fitted adsorption isotherm model and the pseudo-second order model best fitted the adsorption kinetics. The energy of activation for adsorption, which was determined to be 15.23 kJ/mol, also supported a chemisorption process. The mechanism of adsorption was evaluated, and details of all possible interactions between DOX and Ag-MOF were illustrated. On the other hand, while examining the impact of temperature, we identified the thermodynamic constraints as ΔG°, ΔH°, and ΔS° and confirmed that the reaction was an endothermic one and spontaneous. Even after numerous reuse cycles, the efficiency remained constant. The synthetic adsorbent was remarkably recyclable at a rate of more than 91.6%. By using the MTT assay, the cytotoxicity of the tested Ag-MOF and DOX@Ag-MOF against human breast cancer cells (MCF-7) was evaluated in vitro. The in vitro antimicrobial activity of Ag-MOF and DOX@Ag-MOF was also tested.

3.
Chem Commun (Camb) ; 55(74): 11041-11044, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453601

RESUMO

The complex cis-[Re(bpy)2(CO)2]+OTf- (1+OTf-) is an integrated photosensitizer/catalyst for the selective visible light promoted photocatalytic reduction of CO2. The formation of formic acid is unique among this class of Re catalysts, which yield CO as the selective product. A supplemental photosensitizer, Ru(bpy)32+, considerably enhanced the performance of this catalyst.

4.
ChemSusChem ; 12(15): 3453-3457, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31185145

RESUMO

Visible-light photocatalytic CO2 reduction is carried out by using a RuII complex supported by N,N'-bis(diphenylphosphino)-2,6-diaminopyridine ("PNP") ligands, an unprecedented molecular architecture for this reaction that breaks the longstanding domination of α-diimine ligands. These competent catalysts transform CO2 into formic acid with high selectivity and turnover number. A proposed mechanism, with combined electron transfer and catalytic cycles, models the experimental rate of formic acid production.

5.
Inorg Chem ; 57(21): 13092-13096, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351091

RESUMO

The fundamental challenge of reducing CO2 into more valuable energy-containing compounds depends on revealing new catalysts for this process. By removal of the long-standing limitation of α-diimine ligation, which is dominant in photocatalytic complexes in this area, new visible-light, CO2-reducing photocatalysts based on Mn and Re supported by κ2-PN phosphinoaminopyridine ligands were identified. These catalysts, [M{κ2-(Ph2P)NH(NC5H4)}(CO)3Br], displayed excellent product selectivity and, by a change of only the metal center, gave a dramatic product switch from CO with M = Mn to HCO2H with M = Re. The catalyst systems were explored with variation of the ligand, electron donor, solvent, and photosensitizer. The products were definitively traced using 13CO2 as a substrate. Both complexes quenched the excited-state photosensitizer Ru(bpy)32+*, suggesting oxidative quenching as a potential entry into the catalytic cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...