Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 826746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265640

RESUMO

The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.

2.
iScience ; 25(2): 103768, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141507

RESUMO

Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species.

3.
Cell Syst ; 13(2): 143-157.e3, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34637888

RESUMO

The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic.


Assuntos
COVID-19 , Epitopos de Linfócito T , SARS-CoV-2 , COVID-19/virologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Mutação , SARS-CoV-2/genética
4.
Methods Mol Biol ; 2420: 137-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905171

RESUMO

Developing a deep and comprehensive understanding of the collection of peptides presented by class I human leukocyte antigens (HLA ), collectively referred to as the immunopeptidome , is conducive to the success of a wide range of immunotherapies. The development of tools that enable the deconvolution of immunopeptidomes in the context of disease can help improve the specificity and effectiveness of therapeutic strategies targeting these peptides, such as adoptive T-cell therapy and vaccines. Here, we describe a computational workflow that facilitates the processing and interpretation of data-independent acquisition mass spectrometry (DIA-MS). We consider a specific variation of DIA-MS known as SWATH-MS. SWATH-MS is a promising technique that can be utilized to reproducibly characterize and quantify immunopeptidomes isolated from a wide range of biological sources. In this workflow, we use an assortment of database search engines and computational tools to build high-quality HLA allele-specific peptide spectral peptide libraries for the analysis of immunopeptidomic datasets acquired by SWATH-MS. Generating and sharing these spectral libraries are essential for the SWATH-MS technology to meet its full potential and to enable the rapid and reproducible quantification of HLA-specific peptides across multiple samples.


Assuntos
Espectrometria de Massas , Alelos , Antígenos HLA , Humanos , Biblioteca de Peptídeos , Peptídeos , Proteoma , Proteômica
5.
Mol Cell Proteomics ; 21(1): 100178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798331

RESUMO

MS-based immunopeptidomics is maturing into an automatized and high-throughput technology, producing small- to large-scale datasets of clinically relevant major histocompatibility complex (MHC) class I-associated and class II-associated peptides. Consequently, the development of quality control (QC) and quality assurance systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semiautomated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition, and MHC specificity to greatly accelerate the "pass-fail" QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan, and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.


Assuntos
Antígenos de Histocompatibilidade Classe I , Software , Peptídeos , Proteômica , Controle de Qualidade
6.
STAR Protoc ; 2(4): 100875, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746858

RESUMO

Identification of proteasomal spliced peptides (PSPs) by mass spectrometry (MS) is not possible with traditional search engines. Here, we provide a protocol for running RHybridFinder (RHF), an R package for the computational inference of putative PSPs detected by MS. RHF extracts high confidence scored de novo sequenced peptides identified by PEAKS software. Those peptides are then matched to protein databases to infer cis- or trans-spliced major histocompatibility complex (MHC)-associated peptides. RHF is relatively fast and straightforward. PSPs have to be validated experimentally. For complete details on the use and execution of the original protocol, please refer to Faridi et al. (2018).


Assuntos
Peptídeos , Complexo de Endopeptidases do Proteassoma , Proteômica/métodos , Software , Bases de Dados de Proteínas , Epitopos/genética , Humanos , Espectrometria de Massas , Peptídeos/química , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética
7.
Methods Mol Biol ; 2263: 465-485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877613

RESUMO

Cellular membranes are a central hub for initiation and execution of many signaling processes. Integral to these processes being accomplished appropriately is the highly controlled recruitment and assembly of proteins at membrane surfaces. The study of the molecular mechanisms that mediate protein-membrane interactions can be facilitated by utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS is a robust analytical technique that allows for the measurement of the exchange rate of backbone amide hydrogens with solvent to make inferences about protein structure and conformation. This chapter discusses the use of HDX-MS as a tool to study the conformational changes that occur within peripheral membrane proteins upon association with membrane. Particular reference will be made to the analysis of the protein kinase Akt and its activation upon binding phosphatidylinositol (3,4,5) tris-phosphate (PIP3)-containing membranes to illustrate specific methodological principles.


Assuntos
Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fenômenos Biofísicos , Membrana Celular/química , Espectrometria de Massa com Troca Hidrogênio-Deutério , Simulação de Dinâmica Molecular , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Conformação Proteica , Proteômica
8.
J Biol Chem ; 294(18): 7488-7502, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30890560

RESUMO

Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Regulação Alostérica , Aminoácidos/química , Domínio Catalítico , Ativação Enzimática , Humanos , Hidroxiureia/farmacologia , Mutação , Conformação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/genética , Difração de Raios X
9.
J Biol Chem ; 294(12): 4621-4633, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30659094

RESUMO

Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.


Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Gelatina/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfatidilinositol 3-Quinase/genética , Ligação Proteica
10.
J Med Chem ; 61(23): 10463-10472, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30380865

RESUMO

Using a novel chemistry-based assay for identifying electrophilic natural products in unprocessed extracts, we identified the PI3-kinase/mTOR dual inhibitor neolymphostin A from Salinispora arenicola CNY-486. The method further showed that the vinylogous ester substituent on the neolymphostin core was the exact site for enzyme conjugation. Tandem MS/MS experiments on PI3Kα treated with the inhibitor revealed that neolymphostin covalently modified Lys802 with a shift in mass of +306 amu, corresponding to addition of the inhibitor and elimination of methanol. The binding pose of the inhibitor bound to PI3Kα was modeled, and hydrogen-deuterium exchange mass spectrometry experiments supported this model. Against a panel of kinases, neolymphostin showed good selectivity for PI3-kinase and mTOR. In addition, the natural product blocked AKT phosphorylation in live cells with an IC50 of ∼3 nM. Taken together, neolymphostin is the first reported example of a covalent kinase inhibitor from the bacterial domain of life.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ésteres/química , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/química , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Conformação Proteica , Quinolinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(45): E10548-E10555, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348763

RESUMO

Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.


Assuntos
Miosina não Muscular Tipo IIA/química , Toxoplasma/metabolismo , Sequência de Aminoácidos , Antiprotozoários/química , Antiprotozoários/farmacologia , Sítios de Ligação , Desenho de Fármacos , Mimetismo Molecular , Mutação , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Toxoplasma/efeitos dos fármacos
12.
Nat Commun ; 9(1): 3772, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217979

RESUMO

The GTPase Rab11 plays key roles in receptor recycling, oogenesis, autophagosome formation, and ciliogenesis. However, investigating Rab11 regulation has been hindered by limited molecular detail describing activation by cognate guanine nucleotide exchange factors (GEFs). Here, we present the structure of Rab11 bound to the GEF SH3BP5, along with detailed characterization of Rab-GEF specificity. The structure of SH3BP5 shows a coiled-coil architecture that mediates exchange through a unique Rab-GEF interaction. Furthermore, it reveals a rearrangement of the switch I region of Rab11 compared with solved Rab-GEF structures, with a constrained conformation when bound to SH3BP5. Mutation of switch I provides insights into the molecular determinants that allow for Rab11 selectivity over evolutionarily similar Rab GTPases present on Rab11-positive organelles. Moreover, we show that GEF-deficient mutants of SH3BP5 show greatly decreased Rab11 activation in cellular assays of active Rab11. Overall, our results give molecular insight into Rab11 regulation, and how Rab-GEF specificity is achieved.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/ultraestrutura , Proteínas rab de Ligação ao GTP/ultraestrutura , Cristalografia , Escherichia coli , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Estrutura Molecular , Mutação , Ligação Proteica , Proteínas rab de Ligação ao GTP/metabolismo
13.
J Mol Biol ; 430(18 Pt B): 3129-3142, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30031006

RESUMO

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the lipid kinase primarily responsible for generating the lipid phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, which acts as the substrate for generation of the signaling lipids PIP2 and PIP3. PI4KIIIα forms a large heterotrimeric complex with two regulatory partners, TTC7 and FAM126. We describe using an integrated electron microscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach to probe the architecture and dynamics of the complex of PI4KIIIα/TTC7/FAM126. HDX-MS reveals that the majority of the PI4KIIIα sequence was protected from exchange in short deuterium pulse experiments, suggesting presence of secondary structure, even in putative unstructured regions. Negative stain electron microscopy reveals the shape and architecture of the full-length complex, revealing an overall dimer of PI4KIIIα/TTC7/FAM126 trimers. HDX-MS reveals conformational changes in the TTC7/FAM126 complex upon binding PI4KIIIα, including both at the direct TTC7-PI4KIIIα interface and at the putative membrane binding surface. Finally, HDX-MS experiments of PI4KIIIα bound to the highly potent and selective inhibitor GSK-A1 compared to that bound to the non-specific inhibitor PIK93 revealed substantial conformational changes throughout an extended region of the kinase domain. Many of these changes were distant from the putative inhibitor binding site, showing a large degree of allosteric conformational changes that occur upon inhibitor binding. Overall, our results reveal novel insight into the regulation of PI4KIIIα by its regulatory proteins TTC7/FAM126, as well as additional dynamic information on how selective inhibition of PI4KIIIα is achieved.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , 1-Fosfatidilinositol 4-Quinase/química , Regulação Alostérica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas/química , Proteínas Recombinantes
14.
Proc Natl Acad Sci U S A ; 115(17): E3940-E3949, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632185

RESUMO

The protein kinase Akt controls myriad signaling processes in cells, ranging from growth and proliferation to differentiation and metabolism. Akt is activated by a combination of binding to the lipid second messenger PI(3,4,5)P3 and its subsequent phosphorylation by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2. The relative contributions of these mechanisms to Akt activity and signaling have hitherto not been understood. Here, we show that phosphorylation and activation by membrane binding are mutually interdependent. Moreover, the converse is also true: Akt is more rapidly dephosphorylated in the absence of PIP3, an autoinhibitory process driven by the interaction of its PH and kinase domains. We present biophysical evidence for the conformational changes in Akt that accompany its activation on membranes, show that Akt is robustly autoinhibited in the absence of PIP3 irrespective of its phosphorylation, and map the autoinhibitory PH-kinase interface. Finally, we present a model for the activation and inactivation of Akt by an ordered series of membrane binding, phosphorylation, dissociation, and dephosphorylation events.


Assuntos
Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Enzimática , Humanos , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...