Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(21): 12455-12468, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053257

RESUMO

Many RNA-binding proteins including a master regulator of splicing in developing brain and muscle, polypyrimidine tract-binding protein 1 (PTBP1), can either activate or repress alternative exons depending on the pre-mRNA recruitment position. When bound upstream or within regulated exons PTBP1 tends to promote their skipping, whereas binding to downstream sites often stimulates inclusion. How this switch is orchestrated at the molecular level is poorly understood. Using bioinformatics and biochemical approaches we show that interaction of PTBP1 with downstream intronic sequences can activate natural cassette exons by promoting productive docking of the spliceosomal U1 snRNP to a suboptimal 5' splice site. Strikingly, introducing upstream PTBP1 sites to this circuitry leads to a potent splicing repression accompanied by the assembly of an exonic ribonucleoprotein complex with a tightly bound U1 but not U2 snRNP. Our data suggest a molecular mechanism underlying the transition between a better-known repressive function of PTBP1 and its role as a bona fide splicing activator. More generally, we argue that the functional outcome of individual RNA contacts made by an RNA-binding protein is subject to extensive context-specific modulation.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Modelos Genéticos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Processamento Alternativo/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Proteínas de Ligação a DNA/genética , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Íntrons/genética , Camundongos , Neuroblastoma , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1 , Ubiquitina-Proteína Ligases
2.
Bioessays ; 38(9): 830-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27438915

RESUMO

Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense-mediated decay (NMD) and motif-specific transcript destabilization by CCCH-type zinc finger RNA-binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of "professional" innate and adaptive immunity systems allowed NMD and the motif-triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post-transcriptional gene regulation in this lineage might have been derived through a similar exaptation route.


Assuntos
Eucariotos/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Eucariotos/genética , Humanos
3.
J Biol Chem ; 291(17): 9295-309, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907693

RESUMO

Many eukaryotic organisms encode more than one RNA-dependent RNA polymerase (RdRP) that probably emerged as a result of gene duplication. Such RdRP paralogs often participate in distinct RNA silencing pathways and show characteristic repertoires of enzymatic activities in vitro However, to what extent members of individual paralogous groups can undergo functional changes during speciation remains an open question. We show that orthologs of QDE-1, an RdRP component of the quelling pathway in Neurospora crassa, have rapidly diverged in evolution at the amino acid sequence level. Analyses of purified QDE-1 polymerases from N. crassa (QDE-1(Ncr)) and related fungi, Thielavia terrestris (QDE-1(Tte)) and Myceliophthora thermophila (QDE-1(Mth)), show that all three enzymes can synthesize RNA, but the precise modes of their action differ considerably. Unlike their QDE-1(Ncr) counterpart favoring processive RNA synthesis, QDE-1(Tte) and QDE-1(Mth) produce predominantly short RNA copies via primer-independent initiation. Surprisingly, a 3.19 Å resolution crystal structure of QDE-1(Tte) reveals a quasisymmetric dimer similar to QDE-1(Ncr) Further electron microscopy analyses confirm that QDE-1(Tte) occurs as a dimer in solution and retains this status upon interaction with a template. We conclude that divergence of orthologous RdRPs can result in functional innovation while retaining overall protein fold and quaternary structure.


Assuntos
Evolução Molecular , Proteínas Fúngicas , Neurospora crassa , Multimerização Proteica/fisiologia , RNA Polimerase Dependente de RNA , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/genética , Estrutura Quaternária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
4.
PLoS Genet ; 10(11): e1004771, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375251

RESUMO

Alternative splicing (AS) provides a potent mechanism for increasing protein diversity and modulating gene expression levels. How alternate splice sites are selected by the splicing machinery and how AS is integrated into gene regulation networks remain important questions of eukaryotic biology. Here we report that polypyrimidine tract-binding protein 1 (Ptbp1/PTB/hnRNP-I) controls alternate 5' and 3' splice site (5'ss and 3'ss) usage in a large set of mammalian transcripts. A top scoring event identified by our analysis was the choice between competing upstream and downstream 5'ss (u5'ss and d5'ss) in the exon 18 of the Hps1 gene. Hps1 is essential for proper biogenesis of lysosome-related organelles and loss of its function leads to a disease called type 1 Hermansky-Pudlak Syndrome (HPS). We show that Ptbp1 promotes preferential utilization of the u5'ss giving rise to stable mRNAs encoding a full-length Hps1 protein, whereas bias towards d5'ss triggered by Ptbp1 down-regulation generates transcripts susceptible to nonsense-mediated decay (NMD). We further demonstrate that Ptbp1 binds to pyrimidine-rich sequences between the u5'ss and d5'ss and activates the former site rather than repressing the latter. Consistent with this mechanism, u5'ss is intrinsically weaker than d5'ss, with a similar tendency observed for other genes with Ptbp1-induced u5'ss bias. Interestingly, the brain-enriched Ptbp1 paralog Ptbp2/nPTB/brPTB stimulated the u5'ss utilization but with a considerably lower efficiency than Ptbp1. This may account for the tight correlation between Hps1 with Ptbp1 expression levels observed across mammalian tissues. More generally, these data expand our understanding of AS regulation and uncover a post-transcriptional strategy ensuring co-expression of a subordinate gene with its master regulator through an AS-NMD tracking mechanism.


Assuntos
Processamento Alternativo/genética , Síndrome de Hermanski-Pudlak/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética , Animais , Éxons , Regulação da Expressão Gênica , Células HeLa , Síndrome de Hermanski-Pudlak/patologia , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/biossíntese , Sítios de Splice de RNA/genética
5.
Biochem Soc Trans ; 42(4): 1168-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25110020

RESUMO

Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.


Assuntos
Processamento Alternativo/genética , Precursores de RNA/genética , Processamento Alternativo/fisiologia , Animais , Expressão Gênica/genética , Expressão Gênica/fisiologia , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...