Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8904, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618759

RESUMO

Despite the extensive reports on the potential hazard of magnetic field (MF) exposures on humans, there are also concurrently reported on the improved proliferative property of stem cells at optimum exposure. However, the effect on mesenchymal stem cells (MSCs) remains unknown. Therefore, we aimed to investigate the impact of induced static MF (SMF) on human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) using Samarium Cobalt (SmCO5). At passage 3, hUC-MSCs (1 × 104) were exposed to 21.6 mT SMF by a direct exposure (DE) showed a significantly higher cell count (p < 0.05) in the growth kinetics assays with the shortest population doubling time relative to indirect exposure and negative control. The DE group was committed into the cell cycle with increased S phase (55.18 ± 1.38%) and G2/M phase (21.75 ± 1.38%) relative to the NC group [S-phase (13.54 ± 2.73%); G2/M phase (8.36 ± 0.28%)]. Although no significant changes were observed in the immunophenotype, the DE group showed an elevated expression of pluripotency-associated markers (OCT4, SOX2, NANOG, and REX1). These results suggest that the MFs could potentially induce proliferation of MSCs, a promising approach to promote stem cells propagation for clinical therapy and research without compromising the stemness of hUC-MSCs.


Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Proliferação de Células , Células Cultivadas , Cobalto , Humanos , Fenômenos Magnéticos , Samário
2.
J Zhejiang Univ Sci B ; 23(1): 42-57, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35029087

RESUMO

Mesenchymal stem/stromal cell (MSC)|-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.


Assuntos
Campos Eletromagnéticos , Células-Tronco Mesenquimais , Diferenciação Celular , Proliferação de Células , Transdução de Sinais
3.
Curr Drug Deliv ; 18(3): 312-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940179

RESUMO

INTRODUCTION: Bioconjugations are swiftly progressing and are being applied to solve several limitations of conventional Drug Delivery Systems (DDS) such as lack of water solubility, non-specific, and poor bioavailability. The main goals of DDS are to achieve greater drug effectiveness and minimize toxicity to the healthy tissues. OBJECTIVES AND METHODS: In this study, D-glucose was conjugated with eugenol to target the cancer cells. To identify the implication of the anticancer effect, osteosarcoma (K7M2) cells were cultured and the anti-proliferative effect was performed using MTT [3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide assay] test in order to evaluate the viability and toxicity on cells with various concentrations of eugenol and D-glucose-eugenol conjugate in 24-hour incubation. RESULTS: It was found that, the successful confirmation of the conjugation between D-glucose and eugenol was obtained by 1H NMR spectroscopy. MTT assay showed inhibitory concentration (IC50 value) of D-glucose-eugenol was at 96.2 µg/ml and the decreased of osteosarcoma cell survival was 48%. Conclucion: These findings strongly indicate that K7M2 cells would be affected by toxicity of Dglucose- eugenol. Therefore, the present study suggests that D-glucose-eugenol has high potential to act as an anti-proliferative agent who may promise a new modality or approach as the drug delivery treatment for cancer or chemotherapeutic agent.


Assuntos
Produtos Biológicos , Eugenol/uso terapêutico , Glucose/farmacologia , Neoplasias , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Eugenol/química , Eugenol/farmacologia , Glucose/química , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA