Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 13(3): 1711-1726, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712622

RESUMO

Environmental pollution, climate change, and fossil fuel extinction have aroused serious global interest in the search for alternative energy sources. The dry reforming of methane (DRM) could be a good technique to harness syngas, a starting material for the FT energy process from greenhouse gases. Noble metal DRM catalysts are effective for the syngas generation but costly. Therefore, they inevitably, must be replaced by their Ni-based contemporaries for economic reasons. However, coking remains a strong challenge that impedes the industrialization of the FT process. This article explains the secondary reactions that lead to the production of detrimental graphitic coke deposition on the surface of active nickel catalyst. The influence of nickel particle size, impact of extra surface oxygen species, interaction of Ni catalysts with metal oxide supports/promoters, and larger fraction of exposed nickel active sites were addressed in this review. Size of active metal determines the conversion, surface area, metal dispersion, surface reactions, interior diffusion effects, activity, and yield. The influence of oxygen vacancy and coke deposition on highly reported metal oxide supports/promoters (Al2O3, MgO and La2O3) was postulated after studying CIFs (crystallographic information files) obtained from the Crystallography open database (COD) on VESTA software. Thus, overcoming excessive coking by La2O3 promotion is strongly advised in light of the orientation of the crystal lattice characteristics and the metal-support interaction can be used to enhance activity and stability in hydrogen reforming systems.

3.
Chemosphere ; 277: 130285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33794437

RESUMO

Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.


Assuntos
Poluentes Ambientais , Monóxido de Carbono , Catálise , Humanos , Metais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...