Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 8(1): 2778, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426860

RESUMO

Demand is increasing for superhydrophobic materials in many applications, such as membrane distillation, separation and special coating technologies. In this study, we report a chemical vapor deposition (CVD) process to fabricate superhydrophobic carbon nanomaterials (CNM) on nickel (Ni)-doped powder activated carbon (PAC). The reaction temperature, reaction time and H2/C2H2 gas ratio were optimized to achieve the optimum contact angle (CA) and carbon yield (CY). For the highest CY (380%) and CA (177°), the optimal reaction temperatures were 702 °C and 687 °C, respectively. However, both the reaction time (40 min) and gas ratio (1.0) were found to have similar effects on CY and CA. Based on the Field emission scanning electron microscopy and transmission electron microscopy images, the CNM could be categorized into two main groups: a) carbon spheres (CS) free carbon nanofibers (CNFs) and b) CS mixed with CNFs, which were formed at 650 and 750 °C, respectively. Raman spectroscopy and thermogravimetric analysis also support this finding. The hydrophobicity of the CNM, expressed by the CA, follows the trend of CS-mixed CNFs (CA: 177°) > CS-free CNFs (CA: 167°) > PAC/Ni (CA: 65°). This paves the way for future applications of synthesized CNM to fabricate water-repellent industrial-grade technologies.

2.
Crit Rev Food Sci Nutr ; 58(9): 1495-1511, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28033035

RESUMO

Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.


Assuntos
Cosméticos/análise , Aditivos Alimentares/análise , Análise de Alimentos/métodos , Gelatina/química , Preparações Farmacêuticas/análise , Animais , Bovinos , Eletroforese , Ensaio de Imunoadsorção Enzimática , Peixes , Tecnologia de Alimentos , Marcadores Genéticos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Suínos
3.
Carbohydr Polym ; 178: 57-68, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050615

RESUMO

For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials.


Assuntos
Celulose/química , Compostos de Cromo/química , Nanopartículas/química , Hidrólise , Temperatura
4.
Materials (Basel) ; 10(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772403

RESUMO

This study reported on the feasibility and practicability of Cr(NO3)3 hydrolysis to isolate cellulose nanocrystals (CNCCr(NO3)3) from native cellulosic feedstock. The physicochemical properties of CNCCr(NO3)3 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4). In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO3)3 metal salt and solid-liquid ratio of 1:30, the CNCCr(NO3)3 exhibited a network-like long fibrous structure with the aspect ratio of 15.7, while the CNCH2SO4 showed rice-shape structure with an aspect ratio of 3.5. Additionally, Cr(NO3)3-treated CNC rendered a higher crystallinity (86.5% ± 0.3%) with high yield (83.6% ± 0.6%) as compared to the H2SO4-treated CNC (81.4% ± 0.1% and 54.7% ± 0.3%, respectively). Furthermore, better thermal stability of CNCCr(NO3)3 (344 °C) compared to CNCH2SO4 (273 °C) rendered a high potential for nanocomposite application. This comparable effectiveness of Cr(NO3)3 metal salt provides milder hydrolysis conditions for highly selective depolymerization of cellulosic fiber into value-added cellulose nanomaterial, or useful chemicals and fuels in the future.

5.
Food Chem ; 224: 97-104, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159299

RESUMO

Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.


Assuntos
Culinária/métodos , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Reação em Cadeia da Polimerase/métodos , Carne Vermelha/análise , Animais , Búfalos , Bovinos , Culinária/normas , DNA/análise , DNA/genética , Manipulação de Alimentos/normas , Rotulagem de Alimentos/métodos , Rotulagem de Alimentos/normas , Produtos da Carne/normas , Reação em Cadeia da Polimerase/normas , Carne Vermelha/normas , Reprodutibilidade dos Testes
6.
Carbohydr Polym ; 157: 1511-1524, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987863

RESUMO

Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.


Assuntos
Arecaceae/química , Celulose/síntese química , Frutas/química , Celulose/metabolismo , Hidrólise , Lignina , Oxirredução
7.
Nanoscale Res Lett ; 11(1): 510, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27864819

RESUMO

Although many methods have been documented for carbon nanotube (CNT) synthesis, still, we notice many arguments, criticisms, and appeals for its optimization and process control. Industrial grade CNT production is urgent such that invention of novel methods and engineering principles for large-scale synthesis are needed. Here, we comprehensively review arc discharge (AD) and laser ablation (LA) methods with highlighted features for CNT production. We also display the growth mechanisms of CNT with reasonable grassroots knowledge to make the synthesis more efficient. We postulate the latest developments in engineering carbon feedstock, catalysts, and temperature cum other minor reaction parameters to optimize the CNT yield with desired diameter and chirality. The rate limiting steps of AD and LA are highlighted because of their direct role in tuning the growth process. Future roadmap towards the exploration of CNT synthesis methods is also outlined.

8.
Sci Rep ; 6: 33572, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721429

RESUMO

The present study reported for the first time covalent immobilization of protocatechuate 3,4-dioxygenase (3,4-POD) onto functionalized multi-walled carbon nanotubes (F-MWCNT) for degrading the toxic 3,4-dihydroxybenzoic acid (3,4-DHBA) pollutant in water. The F-MWCNTs had a maximum 3,4-POD loading of 1060 µg/mg. Immobilized 3,4 POD had 44% of relative structural changes to its free configurations. Nevertheless, >90% of relative activity and about 50% of catalytic efficiency were retained to the free enzyme. Immobilized 3,4-POD demonstrated higher alkaline stability and thermostability than the free 3,4-POD. The free and immobilized 3,4-POD lost 82% and 66% of relative activities, respectively after 180 min of incubations at 90 °C. Excellent shelf-life was observed for the immobilized 3,4-POD with residual activity of 56% compared with 41% and 39% of the free 3,4-POD at 4 °C and 25 °C over 30 days storage. Immobilized 3,4-POD showed >60% of catalytic activity retention even after ten-cycle uses, defraying the expenses of free 3,4-POD productions for long term uses. Finally, the immobilized 3,4-POD removed 71% of 3,4-DHBA from water in <4 h, paving its future application for water purification with reduced costs and time.

9.
PLoS One ; 11(10): e0163436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716792

RESUMO

The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.


Assuntos
Produtos da Carne/análise , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição/genética , Tartarugas/genética , Animais , Bioensaio/métodos , DNA/genética , Cadeia Alimentar , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Dispositivos Lab-On-A-Chip , Medicina Tradicional Chinesa/métodos , Reprodutibilidade dos Testes , Especificidade da Espécie
10.
Int J Mol Sci ; 17(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27618893

RESUMO

Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR) of the designed compounds was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular ¹C4 conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4-8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4-8 were 0.49 < Pa < 0.60 (where Pa is probability 'to be active') as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4-8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4-8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Oligossacarídeos/química , Ramnose/química , Bactérias/efeitos dos fármacos , Sequência de Carboidratos , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Software , Relação Estrutura-Atividade
11.
Environ Sci Pollut Res Int ; 23(22): 23158-23168, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591888

RESUMO

For the synthesis of a highly active TiO2-chitosan nanocomposite, pH plays a crucial role towards controlling its morphology, size, crystallinity, thermal stability, and surface adsorption properties. The presence of chitosan (CS) biopolymer facilitates greater sustainability to the photoexcited electrons and holes on the catalysts' surface. The variation of synthesis pH from 2 to 5 resulted in different physico-chemical and photocatalytic properties, whereby a pH of 3 resulted in TiO2-chitosan nanocomposite with the highest photocatalytic degradation (above 99 %) of methylene orange (MO) dye. This was attributed to the efficient surface absorption properties, high crystallinity, and the presence of reactive surfaces of -NH2 and -OH groups, which enhances the adsorption-photodegradation effect. The larger surface oxygen vacancies coupled with reduced electron-hole recombination further enhanced the photocatalytic activity. It is undeniable that the pH during synthesis is critical towards the development of the properties of the TiO2-chitosan nanocomposite for the enhancement of photocatalytic activity.


Assuntos
Quitosana/química , Nanocompostos/química , Titânio/química , Ácidos/química , Adsorção , Catálise , Concentração de Íons de Hidrogênio , Transição de Fase , Fotólise , Propriedades de Superfície
12.
Artigo em Inglês | MEDLINE | ID: mdl-27643977

RESUMO

The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.


Assuntos
Medicamentos de Ervas Chinesas/química , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Produtos da Carne/análise , Compostos Orgânicos/análise , Reação em Cadeia da Polimerase em Tempo Real , Tartarugas , Animais , Benzotiazóis , China , DNA/análise , DNA/genética , Diaminas , Pós/análise , Quinolinas , Tartarugas/genética
13.
J Agric Food Chem ; 64(32): 6343-54, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27501408

RESUMO

Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Búfalos/genética , Bovinos/genética , Contaminação de Alimentos/análise , Produtos da Carne/análise , Reação em Cadeia da Polimerase Multiplex/métodos , Suínos/genética , Animais , Análise Discriminante , Polimorfismo de Fragmento de Restrição
14.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367658

RESUMO

A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Hidroxitolueno Butilado/química , Desenho de Fármacos , Bases de Schiff/química , Triazóis/química , Triazóis/farmacologia , Antioxidantes/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/antagonistas & inibidores , Radicais Livres/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espécies Reativas de Oxigênio/química , Triazóis/síntese química
15.
J Photochem Photobiol B ; 161: 25-33, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27203568

RESUMO

The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.


Assuntos
Grafite/química , Nanoestruturas/toxicidade , Salmonella typhi/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/química , Luz , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Óxidos/química , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhi/efeitos da radiação , Análise Espectral Raman , Staphylococcus aureus/efeitos da radiação
16.
ChemSusChem ; 9(7): 662-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26871428

RESUMO

For the first time, significant improvement of the catalytic performance of nanodiamonds was achieved for the dehydrogenation of ethylbenzene to styrene under oxygen-lean conditions. We demonstrated that the combination of direct dehydrogenation and oxidative dehydrogenation indeed occurred on the nanodiamond surface throughout the reaction system. It was found that the active sp(2)-sp(3) hybridized nanostructure was well maintained after the long-term test and the active ketonic carbonyl groups could be generated in situ. A high reactivity with 40% ethylbenzene conversion and 92% styrene selectivity was obtained over the nanodiamond catalyst under oxygen-lean conditions even after a 240 h test, demonstrating the potential of this procedure for application as a promising industrial process for the ethylbenzene dehydrogenation to styrene without steam protection.


Assuntos
Derivados de Benzeno/química , Nanodiamantes , Oxigênio/química , Estireno/química , Hidrogenação , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Oxirredução , Termogravimetria
17.
Biosens Bioelectron ; 79: 850-60, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26785309

RESUMO

Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Enzimas Imobilizadas/metabolismo , Glucose/metabolismo , Nanotubos de Carbono/química , Oxigênio/metabolismo , Animais , Eletrodos , Enzimas Imobilizadas/química , Desenho de Equipamento , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Lacase/química , Lacase/metabolismo , Modelos Moleculares , Nanotubos de Carbono/ultraestrutura , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Próteses e Implantes
18.
Carbohydr Polym ; 138: 349-55, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26794771

RESUMO

The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications.

19.
Artigo em Inglês | MEDLINE | ID: mdl-26458055

RESUMO

This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.


Assuntos
DNA/análise , Cães/genética , Contaminação de Alimentos/análise , Carne/análise , Sondas de Oligonucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Galinhas , DNA/genética , Sondas de Oligonucleotídeos/análise
20.
Materials (Basel) ; 9(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28774068

RESUMO

Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...