Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 79: 850-60, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26785309

RESUMO

Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Enzimas Imobilizadas/metabolismo , Glucose/metabolismo , Nanotubos de Carbono/química , Oxigênio/metabolismo , Animais , Eletrodos , Enzimas Imobilizadas/química , Desenho de Equipamento , Glucose 1-Desidrogenase/química , Glucose 1-Desidrogenase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Lacase/química , Lacase/metabolismo , Modelos Moleculares , Nanotubos de Carbono/ultraestrutura , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Próteses e Implantes
2.
J Colloid Interface Sci ; 441: 52-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25490562

RESUMO

Thermal decomposition of co-precipitated Ni-Fe-HT materials led to the formation a mesoporous Ni-Fe-HT catalyst and we have demonstrated here its active role as solid and active catalyst for the Knoevenagel condensation reaction of various aldehydes with active methylene compounds (R-CH2-CN, where R=CN or CO2Et). High product yields are obtained at moderate temperature under solvent-free conditions and the catalyst can be easily separated from the reaction mixture, simply by filtration and reused several times without a significant loss of its activity. Since these mesoporous metal oxides derived from the NiFe hydrotalcites, their basicity mediated abstraction of the acidic protons from the active methylene compounds was responsible for their catalytic activity under solvent-free conditions.

3.
Materials (Basel) ; 7(4): 2815-2832, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-28788595

RESUMO

This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH). The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II) cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R² values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II) cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m²/g, whereas before base activation, it was only 1.22 m²/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II) cations from waste water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...