Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 9(4): 147, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30944794

RESUMO

Beetroot (Beta vulgaris L.) juice (BRJ) is a good source of betalain (betacyanins and betaxanthin) pigments and exhibits antioxidant, anti-inflammatory, and chemo-preventive activities in vitro and in vivo. The current study was performed to determine the cardioprotective effect of BRJ on lipid peroxidation, antioxidant defense, functional impairment, and histopathology in rats with isoproterenol (ISP)-induced myocardial injury. Myocardial ischemia was induced by ISP (85 mg/kg) s.c. injection at 24 h intervals, followed by oral administration of BRJ for 28 days at doses of 150 and 300 mg/kg. ISP-induced myocardial damage was confirmed by an increase in heart weight to body weight ratio, % infarction size, serum cardiac indices (AST, ALT, GGT, ALP, LDH and CK-MB), and histological alterations in the myocardium. Pretreatment with BRJ (150 and 300 mg/kg) followed by ISP induction reduced oxidative/nitrosative stress and restored the cardiac endogenous antioxidants in rats. ISP augmented cardiac inflammatory cytokines (TNF-α, IL-6 and IL-10), myeloperoxidase activity, NF-κB DNA binding and protein expression of NF-κB (p65), and the hyperlipidemia level was significantly reduced by the BRJ pretreatment. Furthermore, the BRJ pretreatment significantly reduced caspase-3, Bax, and MMP-9 protein expression, enhanced the Bcl-2 antiapoptotic protein expression, alleviated the extent of histological damage, myonecrosis, and edema, and maintained the architecture of cardiomyocytes. These findings suggest that BRJ pretreatment mitigates cardiac dysfunction and structural damages by decreasing oxidative stress, inflammation, and apoptosis in cardiac tissues. These results further support the use of BRJ in traditional medicine against cardiovascular diseases.

2.
3 Biotech ; 8(6): 286, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29881664

RESUMO

The present study was designed to study the quantitative effects of extraction time, temperature and solvent to sample ratio on the yield of Lepidium sativum polysaccharides (LSP) using a Box-Behnken design. The activities of the optimized LSP extract were then tested in an in vivo experimental system of Escherichia coli (E. coli)-induced endotoxin shock. The optimal polysaccharide extraction conditions were established by the equation of regression and evaluation of the response surface contour plots: extraction time 5.2 h; temperature 95 °C and ratio of water to raw material 31.89 mL/g. Subsequently, an in vivo endotoxin shock was induced in mice with a single E. coli i.p. injection. Septic mice showed a substantial raise in the levels of tumor necrosis factor alpha (TNF-α) in plasma, whereas mice treated with LSP after E. coli injection showed considerable lower plasma levels of TNF-α (P < 0.05). These results suggest that LSP have beneficial effects when administered to mice with endotoxin shock by diminishing the pro-inflammatory response. The systemic activity of LSP indicated that the extract has a significant inhibitory effect against E. coli-induced inflammation by reducing the circulating levels of TNF-α. Further studies are warranted to explore the clinical implications of such observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...