Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 78: 103446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776645

RESUMO

The heterozygous mutation c.155G > T in GNB2 clinically leads to sinus bradycardia and sinus node dysfunction. Here, patient-specific skin fibroblasts of the mutation carrier were used for Sendai virus reprogramming into human induced-pluripotent stem cells (hiPSC). For generating the isogenic control cell line, a CRISPR/Cas9-mediated HDR-repair of the hiPSCs was carried out. Both generated cell lines (GNB2 SV5528, GNB2 K26) maintained a normal karyotype, cell morphology, pluripotency in immunofluoresence and RT-qPCR analysis. Both hiPSC-lines showed differentiation potential into all three germ layers. Differentiated cardiomyocytes of this isogenic set may pave the way for investigating pharmacological rescue strategies for sinus node dysfunction.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Mutação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Heterozigoto , Linhagem Celular , Diferenciação Celular , Síndrome do Nó Sinusal/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo
2.
Front Cardiovasc Med ; 10: 1240189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028454

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is a serious hereditary cardiomyopathy. It is characterized morphologically by an increased left ventricular wall thickness and mass and functionally by enhanced global chamber function and myocellular contractility, diastolic dysfunction, and myocardial fibrosis development. Typically, patients with HCM experience atrial fibrillation (AF), syncope, and ventricular fibrillation (VF), causing severe symptoms and cardiac arrest. In contrast, sinoatrial node (SAN) arrest in the setting of HCM is uncommon. In particular, during VF, it has not been described so far. Case summary: In this study, we report an 18-year-old woman patient with sudden cardiac arrest due to VF and successful cardiopulmonary resuscitation as the first clinical manifestation of non-obstructive HCM. Subsequently, a subcutaneous implantable cardioverter-defibrillator (ICD) was implanted for secondary VF prophylaxis. However, additional episodes of VF occurred. During these, device interrogation revealed a combined occurrence of VF, bradycardia, and SAN arrest, requiring a device exchange into a dual-chamber ICD. A heterozygous, pathogenic variant of the MYH7 gene (c.2155C>T; p.Arg719Trp) was identified as causative for HCM. Discussion: First published in 1994, the particular MYH7 variant (p.Arg719Trp) was described in HCM patients with a high incidence of premature cardiac death and a reduced life expectancy. Electrophysiological studies on HCM patients are mainly performed to treat AF and ventricular tachycardia. Further extraordinary arrhythmic phenotypes were reported only in a few HCM patients. Taken together, the present case with documented co-existing VF and SAN arrest is rare and also emphasizes addressing the presence of SAN arrest (in particular, during VF episodes) in HCM patients when a distinct ICD device is considered for implantation.

3.
Cells ; 9(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560212

RESUMO

During aging, senescent cells accumulate in various tissues accompanied by decreased regenerative capacities of quiescent stem cells, resulting in deteriorated organ function and overall degeneration. In this regard, the adult human heart with a generally low regenerative potential is of extreme interest as a target for rejuvenating strategies with blood borne factors that might be able to activate endogenous stem cell populations. Here, we investigated for the first time the effects of human blood plasma and serum on adult human cardiac stem cells (hCSCs) and showed significantly increased proliferation capacities and metabolism accompanied by a significant decrease of senescent cells, demonstrating a beneficial serum-mediated effect that seemed to be independent of age and sex. However, RNA-seq analysis of serum-treated hCSCs revealed profound effects on gene expression depending on the age and sex of the plasma donor. We further successfully identified key pathways that are affected by serum treatment with p38-MAPK playing a regulatory role in protection from senescence and in the promotion of proliferation in a serum-dependent manner. Inhibition of p38-MAPK resulted in a decline of these serum-mediated beneficial effects on hCSCs in terms of decreased proliferation and accelerated senescence. In summary, we provide new insights in the regulatory networks behind serum-mediated protective effects on adult human cardiac stem cells.


Assuntos
Expressão Gênica/fisiologia , Soro/metabolismo , Células-Tronco/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Células-Tronco Multipotentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...