Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(23): 24925-24932, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882104

RESUMO

In this study, we investigate the opto-electro-mechanical properties, thermodynamic stability, and moisture stability of the Ruddlesden-Popper (RP) two-dimensional perovskites of L2PbI4 (L = PEA, FPEA, BA, and BZA) using density functional theory. The goal is to explore their potential application in metastructures. The results show that the stability of FPEA2PbI4 is better than that of PEA2PbI4, BA2PbI4, and BZA2PbI4 due to the replacement of a hydrogen atom with a fluorine atom. On the other hand, BA2PbI4 is more flexible than other materials because it lacks an aromatic ring in its spacer cation, but it is less stable. We introduce a new kind of metastructure composed of an RP perovskite film and conduct an extensive investigation of the quasi-bound states in the continuum (q-BIC) characteristics by near-field analysis and multipole decomposition calculations. The q-BIC resonances in BZA2PBI4 have a greater quality factor due to its larger refractive index in comparison to other materials. Therefore, based on these results, the perovskite materials can be selected for the metastructures from different aspects of stability, flexibility, and refractive index.

2.
Sci Rep ; 13(1): 22411, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104133

RESUMO

A Ruddlesden-Popper 2D perovskite PEA2PbX4 (X = I, Br, and Cl) is proposed for metasurface applications. Density functional theory is used to analyze the optical, electrical, mechanical properties, moisture and thermodynamic stability of PEA2PbX4. The refractive index of PEA2PbX4 varies with the halides, resulting in 2.131, 1.901, and 1.842 for X = I, Br, and Cl, respectively. Mechanical properties with Voigt-Reuss-Hill approximations indicate that all three materials are flexible and ductile. Based on the calculations of formation energy and adsorption of water molecules, PEA2PbI4 has superior thermodynamic and moisture stability. We present a novel metasurface based on 2D-PEA2PbI4 and analyze symmetry protected-bound states in the continuum (sp-BIC) excitation. The proposed structure can excite multiple Fano quasi-BICs (q-BICs) with exceptionally high Q-factors. We verify the group theoretical analysis and explore the near-field distribution and far-field scattering of q-BICs. The findings indicate that x-polarized incident waves can excite magnetic toroidal dipole-electromagnetic-induced transparency-BIC and magnetic quadrupole-BIC, while y-polarized incident waves can excite electric toroidal dipole-BIC and electric quadrupole-BIC. The influence of meta-atom and substrate losses, array size limitations, and fabrication tolerances are also discussed. The proposed structure can be employed for applications in the THz region, such as polarization-dependent filters, bidirectional optical switches, and wearable photonic devices.

3.
Sci Rep ; 13(1): 20625, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996608

RESUMO

In this paper, an all-dielectric metasurface that measures refractive index and temperature using silicon disks is presented. It can simultaneously produce three resonances excited by a magnetic toroidal dipole, magnetic toroidal quadrupole, and electric toroidal dipole, in the THz region. Asymmetric structures are used to generate two quasi-bound states in the continuum (BIC) resonances with ultra-high-quality factors driven by magnetic and electric toroidal dipoles. We numerically study and show the dominant electromagnetic excitations in the three resonances through near-field analysis and cartesian multipole decomposition. The effects of geometric parameters, scaling properties, polarization angles, incident angles, and silicon losses are also investigated. The proposed metasurface is an excellent candidate for sensing due to the extremely high-quality factor of the quasi-BICs. The results demonstrate that the sensitivities for liquid and gas detection are Sl = 569.1 GHz/RIU and Sg = 529 GHz/RIU for magnetic toroidal dipole, and Sl = 532 GHz/RIU and Sg = 498.3 GHz/RIU for electric toroidal dipole, respectively. Furthermore, the sensitivity for temperature monitoring can reach up to 20.24 nm/°C. This work presents a valuable reference for developing applications in the THz region such as optical modulators, multi-channel biochemical sensing, and optical switches.

4.
J Lasers Med Sci ; 13: e24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996486

RESUMO

Introduction: Magnetocardiography (MCG) based on optical atomic magnetometers has shown promise for detecting heart diseases accurately. Different methods were introduced to improve the sensitivity of detecting magnetic fields during cardiac activity. Methods: In this paper, an optical pump-probe magnetometer operated on the ground-state Hanle effect based on the zero-field level crossing technique was developed and the laser output signal was optimized in an unshielded environment. Then, the optical magnetometer was utilized to record the simulated MCG trace of different stages of myocardial ischemia. Results: The probe output light intensity followed the variation of cardiac magnetic field (MCG trace) generated by Helmholtz coil accurately. Conclusion: Based on the results, the feasibility of our highly sensitive optical magnetometer in tracing showed no change in the P-QRS-T waveform associated with ischemic heart disease (IHD), where P indicates atrial depolarization, QRS is responsible for ventricular depolarization, and T represents ventricular repolarization.

5.
Biomed Opt Express ; 12(10): 6013-6023, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745718

RESUMO

The use of nanoparticle photothermal effect as adjuvants in neuromodulation has recently received much attention, with many open questions about new nanostructures' effect on the action potential. The photothermal properties of hexagonal gold nanoparticles are investigated in this work, including the absorption peak wavelength and light-heat conversion rate, using both experimental and simulation methods. Furthermore, the ability to use these nanostructures in axonal neural stimulation and cardiac stimulation by measuring temperature changes of gold nano-hexagons under 532 nm laser irradiation is studied. In addition, their thermal effect on neural responses is investigated by modeling small-diameter unmyelinated axons and heart pacemaker cells. The results show that the increase in temperature caused by these nano-hexagons can successfully stimulate the small diameter axon and produce an action potential. Experiments have also demonstrated that the heat created by gold nano-hexagons affects toad cardiac rhythm and increases T wave amplitude. An increase in T wave amplitude on toad heart rhythm shows the thermal effect of nano hexagons heat on heart pacemaker cells and intracellular ion flows. This work demonstrates the feasibility of utilizing these nanostructures to create portable and compact medical devices, such as optical pacemakers or cardiac stimulation.

6.
J Lasers Med Sci ; 12: e46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733769

RESUMO

Introduction: Plasmonic biosensors provide high sensitivity in detecting the low amount of biomarkers and pharmaceutical drugs. We studied the mesenchyme cell activity under the treatment of common sedative drugs of methadone and tramadol using the integrated plasmonic-ellipsometry technique. Methods: Mesenchymal stem cells were cultured on patterned plasmonic chips under the treatment of methadone and tramadol drugs. Three cultured chips were kept non-treated as the control ones. The plasmonic-ellipsometry technique was applied to study the signaling characteristic of the cells affected by these two drugs. In this technique, optical information regarding the amplitude ratio and phase change between p- and s-polarized light was recorded. Results: This drug treatment could affect the spectral plasmonic resonance and subsequently the phase shift (Δ) and the amplitude ratio (Ψ) values under p- and s-polarized impinging light. A more significant Δ value for tramadol treatment meant that the phase split was larger between p- and s-polarized light. Tramadol also had more prominent absolute Δ eff and Ψ eff values in comparison with methadone. Conclusion: We showed that tramadol caused more contrast in phase shift (Δ) and amplitude ratio (Ψ) between p- and s-polarized impinging light for cultured stem cells in comparison with methadone. It means that tramadol differentiated more the optical responses for p- and s-polarized lights compared to methadone. Our proposed technique possesses the potential of quantitative and qualitative analysis of drugs on humans even on a cell scale.

7.
Eur Phys J Plus ; 136(6): 675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178567

RESUMO

Viruses have threatened animal and human lives since a long time ago all over the world. Some of these tiny particles have caused disastrous pandemics that killed a large number of people with subsequent economic downturns. In addition, the quarantine situation itself encounters the challenges like the deficiency in the online educational system, psychiatric problems and poor international relations. Although viruses have a rather simple protein structure, they have structural heterogeneity with a high tendency to mutation that impedes their study. On top of the breadth of such worldwide worrying issues, there are profound scientific gaps, and several unanswered questions, like lack of vaccines or antivirals to combat these pathogens. Various detection techniques like the nucleic acid test, immunoassay, and microscopy have been developed; however, there is a tradeoff between their advantages and disadvantages like safety in sample collecting, invasiveness, sensitivity, response time, etc. One of the highly resolved techniques that can provide early-stage detection with fast experiment duration is plasmonics. This optical technique has the capability to detect viral proteins and genomes at the early stage via highly sensitive interaction between the biological target and the plasmonic chip. The efficiency of this technique could be proved using commercialized techniques like reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques. In this study, we aim to review the role of plasmonic technique in the detection of 11 deadliest viruses besides 2 common genital viruses for the human being. This is a rapidly moving topic of research, and a review article that encompasses the current findings may be useful for guiding strategies to deal with the pandemics. By investigating the potential aspects of this technique, we hope that this study could open new avenues toward the application of point-of-care techniques for virus detection at early stage that may inhibit the progressively hygienic threats.

8.
Opt Express ; 28(24): 36643-36655, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379754

RESUMO

Despite the existence of various neural recording and mapping techniques, there is an open territory for the emergence of novel techniques. The current neural imaging and recording techniques suffer from invasiveness, a time-consuming labeling process, poor spatial/ temporal resolution, and noisy signals. Among others, neuroplasmonics is a label-free and nontoxic recording technique with no issue of photo-bleaching or signal-averaging. We introduced an integrated plasmonic-ellipsometry platform for membrane activity detection with cost-effective and high-quality grating extracted from commercial DVDs. With ellipsometry technique, one can measure both amplitude (intensity) and phase difference of reflected light simultaneously with high signal to noise ratio close to surface plasmon resonances, which leads to the enhancement of sensitivity in plasmonic techniques. We cultured three different types of cells (primary hippocampal neurons, neuroblastoma SH-SY5Y cells, and human embryonic kidney 293 (HEK293) cells) on the grating surface. By introducing KCl solution as a chemical stimulus, we can differentiate the neural activity of distinct cell types and observe the signaling event in a label-free, optical recording platform. This method has potential applications in recording neural signal activity without labeling and stimulation artifacts.


Assuntos
Técnicas Biossensoriais/métodos , Membrana Celular/fisiologia , Hipocampo/citologia , Neuroblastoma/patologia , Neurônios/citologia , Ressonância de Plasmônio de Superfície/métodos , Animais , Células HEK293/citologia , Humanos , Ratos , Células Tumorais Cultivadas
9.
ACS Omega ; 5(21): 12278-12289, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548411

RESUMO

Considering the large consumption of nicotine and its sedative/stimulant effect on different organs of the body, the detection of low concentration of this material and its subsequent effect on live animals plays a significant role. Optical detection techniques such as plasmonics are the pioneers in highly sensitive detection techniques. However, for investigating the nicotine/smoke effect on live cells, not only the interaction between cell nicotine should be optimized but also the plasmonic interface should show a high sensitivity to the reception of nicotine by the cell receptors. In this study, the sensitivity of the plasmonic detection system was greatly increased using the coupling of plasmon and fluorophore. This coupling could enhance the main plasmonic signal several orders of magnitude besides improving Δ and Ψ ellipsometry parameters. Benefiting from the green fluorescence proteins, the phase shift and the amplitude ratio between the reflections under s- and p-polarized light enhance considerably which verifies the coupling of the dipole of the fluorescence emitter and the plasmons of the metal nanostructure. For 1 s increase of the maintenance time, we encountered a considerable increase in the Δ values that were 0.15° for T e = 1 s and 0.24° for T e = 3 s. Benefiting from extracted ellipsometry parameters, this study could open new avenues toward studying the effect of various types of drugs and stimulants on biological samples using a novel plasmophore platform.

10.
J Lasers Med Sci ; 11(1): 8-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099621

RESUMO

Introduction: Smoking as one of the causes of various diseases has encouraged worldwide studies on its adverse pharmacological effects on different organs. Nicotine may influence the smooth muscles of the colon and subsequently the gut motility, which leads to a change in the moving rate of digested material through the gastrointestinal tract. Methods: Among various techniques, optical detection methods benefit from non-contact and highsensitivity for studying the early effect of nicotine on the cells. Thus, we used an optically ellipsometric method to get the fast and sensitive nicotine effect on the colon cell. Two-dimensional plasmonic platforms by gold deposition onto the polydimethylsiloxane polymer (PDMS) patterned substrate were used as the guest medium of the cell and the sample was excited by all of the visible region wavelengths at different exposure time and maintenance time. Results: Our results showed that the phase difference between each polarization increased by augmenting the exposure time of smoke over the cell at a fixed maintenance time and there was a general red-shift by increasing the maintenance time at a fixed exposure time. Conclusion: Using different exposure time to cigarette smoke, we optically showed that the cigarette containing the addicting chemical of nicotine had a direct effect on the cultured colon cells on our 2D biocompatible plasmonic chip. It demonstrated considerable changes in the amplitude and phase of the interacted light by injecting nicotine into the system with the aid of the label-free and non-invasive plasmonic technique.

11.
Sci Rep ; 9(1): 1378, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718632

RESUMO

A novel plasmonic interferometric sensor intended for application to biochemical sensing has been investigated experimentally and theoretically. The sensor was included a slit surrounded by rectangular grooves using a thick gold film. A three-dimensional finite difference time-domain commercial software package was applied to simulate the structure. The Focused ion beam milling has been used as a mean to fabricate series of rectangular plasmonic interferometer with varying slit-groove distance L. Oscillation behavior is shown by transmission spectra in a broadband wavelength range between 400 nm and 800 nm in the distance between slit and grooves. Red-shifted interference spectrum is the result of increasing refractive indices. The proposed structure is functional from visible to near-infrared wavelength range and yields a sensitivity of 4923 nm/RIU and a figure of merit as high as 214 at 729 nm wavelength. In conclusion, this study indicates the possibility of fabricating a low cost, compact, and real-time high-throughput plasmonic interferometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...