Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 67(11): 3367-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27126795

RESUMO

Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Ornitina Descarboxilase/genética , Proteínas de Plantas/genética , Putrescina/metabolismo , Transcriptoma , Regulação para Baixo , Ornitina Descarboxilase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento
2.
Plant Cell Physiol ; 57(2): 373-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26493517

RESUMO

Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.


Assuntos
Técnicas de Inativação de Genes , Genes de Plantas , Glucosiltransferases/genética , Nitrilas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Cromatografia Líquida , Glucosiltransferases/metabolismo , Cianeto de Hidrogênio/metabolismo , Espectrometria de Massas , Metaboloma , Metabolômica , Mutação/genética , Nitratos/metabolismo , Nitrilas/química , Nitrogênio/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Sorghum/enzimologia , Sorghum/crescimento & desenvolvimento
3.
Funct Plant Biol ; 42(8): 792-801, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480722

RESUMO

In addition to producing medicinally important tropane alkaloids, some species in the mainly Australian Solanaceous tribe Anthocercideae, sister to genus Nicotiana, are known to also contain substantial levels of the pyridine alkaloids nicotine and nornicotine. Here, we demonstrate that axenic hairy root cultures of two tribe Anthocercideae species, Cyphanthera tasmanica Miers and Anthocercis ilicifolia ssp. ilicifolia Hook, contain considerable amounts of both nicotine and nornicotine (~0.5-1% DW), together with lower levels of the tropane alkaloid hyoscyamine (<0.2% DW). Treatment of growing hairy roots of both species with micromolar levels of the wound stress hormone methyl-jasmonate (MeJa) led to significant increases (P<0.05) in pyridine alkaloid concentrations but not of hyoscyamine. Consistent with previous studies involving Nicotiana species, we also observed that transcript levels of key genes required for pyridine alkaloid synthesis increased in hairy roots of both Anthocercideae species following MeJa treatment. We hypothesise that wound-associated induction of pyridine alkaloid synthesis in extant species of tribe Anthocercideae and genus Nicotiana was a feature of common ancestral stock that existed before the separation of both lineages ~15million years ago.

4.
PLoS One ; 8(11): e80035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224034

RESUMO

Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Poaceae/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Biomassa , Secas , Regulação da Expressão Gênica de Plantas , Glicosilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poaceae/genética , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia
5.
Plant Physiol Biochem ; 73: 83-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080394

RESUMO

Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress.


Assuntos
Adaptação Fisiológica , Secas , Nitratos/metabolismo , Nitrilas/metabolismo , Pressão Osmótica , Estresse Oxidativo , Sorghum/fisiologia , Ração Animal , Animais , Glicosídeos/metabolismo , Herbivoria , Raízes de Plantas , Brotos de Planta , Polietilenoglicóis , Solo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Água
6.
Phytochemistry ; 86: 21-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23177980

RESUMO

Unlike most Nicotiana species, leaf tissues of the globally significant weed Nicotiana glauca Grah. (Argentinian tree tobacco) contains anabasine as the main component of its alkaloid pool, with concentrations typically increasing several fold in response to wounding of plants. The Δ(1)-piperidinium ring of anabasine is synthesised from cadaverine, via the decarboxylation of lysine, however the identity of the protein catalysing this reaction remains unknown. Recent studies indicate that ornithine decarboxylase (ODC), an enzyme involved in the synthesis of the diamine putrescine, may also possess LDC activity. Previously we found that ODC transcript is markedly up-regulated in leaves of N. glauca in response to wounding. In order to examine the role of ODC in the synthesis of anabasine in N. glauca, transcript levels were constitutively down-regulated in hairy root cultures and transgenic plants via the introduction of a CaMV35S driven ODC-RNAi construct. In addition to the anticipated marked reduction in nicotine concentrations, demonstrating that the ODC-RNAi construct was functioning in vivo, we observed that N. glauca ODC-RNAi hairy root cultures had a significantly diminished capacity to elevate anabasine synthesis in response to treatment with the wound-associated hormone methyl jasmonate, when compared to vector-only controls. We observed also that ODC-RNAi transgenic plants had significantly reduced ability to increase anabasine concentrations following removal of the plant apex. We conclude that ODC does have an important role in enabling N. glauca to elevate levels of anabasine in response to wound-associated stress.


Assuntos
Anabasina/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Interferência de RNA
7.
PLoS One ; 7(4): e35688, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539991

RESUMO

The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.


Assuntos
Vacinas contra Influenza/imunologia , Nicotiana/metabolismo , Animais , Citocinas/metabolismo , DNA/metabolismo , Hemaglutininas/genética , Hemaglutininas/imunologia , Hemaglutininas/metabolismo , Imunoglobulina G/sangue , Vírus da Influenza A/metabolismo , Vacinas contra Influenza/metabolismo , Camundongos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo
8.
Biotechnol Lett ; 34(6): 1143-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22354474

RESUMO

The wound-inducible quinolinate phosphoribosyl transferase promoter from Nicotiana tabacum (NtQPT2) was assessed for its capacity to produce B-subunit of the heat-labile toxin (LTB) from enterotoxigenic Escherichia coli in transgenic plant tissues. Comparisons were made with the widely used and constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter. The NtQPT2 promoter produced somewhat lower average concentrations of LTB protein per unit weight of hairy root tissue but allowed better growth thereby producing similar or higher overall average yields of LTB per culture batch. Transgenic tobacco plants containing the NtQPT2-LTB construct contained LTB protein in roots but not leaves. Moreover, wounding NtQPT2-LTB transgenic plants, by removal of apices, resulted in an approximate 500% increase in LTB levels in roots when analysed several days later. CaMV35S-LTB transgenic plants contained LTB protein in leaves and roots but wounding made no difference to their LTB content.


Assuntos
Toxinas Bacterianas/biossíntese , Enterotoxinas/biossíntese , Proteínas de Escherichia coli/biossíntese , Nicotiana/genética , Nicotiana/metabolismo , Pentosiltransferases/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Vacinas/biossíntese , Toxinas Bacterianas/genética , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Vacinas/genética
9.
PLoS One ; 7(12): e52907, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285224

RESUMO

Antigen-specific antibody responses against a model antigen (the B subunit of the heat labile toxin of enterotoxigenic Escherichia coli, LTB) were studied in sheep following oral immunisation with plant-made and delivered vaccines. Delivery from a root-based vehicle resulted in antigen-specific immune responses in mucosal secretions of the abomasum and small intestine and mesenteric lymph nodes. Immune responses from the corresponding leaf-based vaccine were more robust and included stimulation of antigen-specific antibodies in mucosal secretions of the abomasum. These findings suggest that oral delivery of a plant bioencapsulated antigen can survive passage through the rumen to elicit mucosal and systemic immune responses in sheep. Moreover, the plant tissue used as the vaccine delivery vehicle affects the magnitude of these responses.


Assuntos
Antígenos de Plantas/imunologia , Vacinas Bacterianas/imunologia , Enterotoxinas/genética , Plantas Geneticamente Modificadas/imunologia , Administração Oral , Animais , Vacinas Bacterianas/síntese química , Vacinas Bacterianas/química , Escherichia coli Enterotoxigênica/imunologia , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Infecções por Escherichia coli/prevenção & controle , Imunidade Celular/efeitos dos fármacos , Imunização/métodos , Imunização/veterinária , Masculino , Modelos Teóricos , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Ovinos , Doenças dos Ovinos/prevenção & controle
10.
Plant Biotechnol J ; 10(1): 54-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880107

RESUMO

Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.


Assuntos
Ração Animal , Biotecnologia/métodos , Genoma de Planta/genética , Glicosídeos/metabolismo , Mutagênese/genética , Mutação/genética , Sorghum/genética , Animais , Vias Biossintéticas , Western Blotting , Cruzamentos Genéticos , Sistema Enzimático do Citocromo P-450/genética , Metanossulfonato de Etila , Humanos , Cianeto de Hidrogênio/metabolismo , Microssomos/enzimologia , Modelos Moleculares , NADP/metabolismo , Nitrilas/metabolismo , Fenótipo , Sorghum/enzimologia , Homologia Estrutural de Proteína
11.
Curr Drug Deliv ; 8(6): 612-21, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864256

RESUMO

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.


Assuntos
Antígenos de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Enterotoxinas/administração & dosagem , Proteínas de Escherichia coli/administração & dosagem , Magnoliopsida , Plantas Geneticamente Modificadas , Vacinas/administração & dosagem , Agrobacterium/genética , Agrobacterium/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Infecções Bacterianas/prevenção & controle , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Enterotoxinas/biossíntese , Enterotoxinas/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Feminino , Trato Gastrointestinal/imunologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Magnoliopsida/genética , Magnoliopsida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Folhas de Planta , Plantas Geneticamente Modificadas/metabolismo , Vacinação/métodos
12.
Biotechnol Lett ; 33(12): 2495-502, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21786173

RESUMO

The gene encoding enterotoxigenic Escherichia coli B-subunit heat-labile toxin (LTB) antigen was co-transformed into hairy root cultures of Nicotiana tabacum (tobacco), Solanum lycopersicum (tomato) and Petunia parodii (petunia) under the CaMV35S promoter. Tobacco and petunia roots contained ~65-70 µg LTB g(-1) tissue whilst hairy roots of tomato contained ~10 µg LTB g(-1). Antigen at ~600 ng ml(-1) was detected in growth medium of tobacco and petunia. Tobacco roots with higher LTB levels showed growth retardation of ~80% whereas petunia hairy roots with similar levels of LTB showed only ~35% growth retardation, relative to vector controls. Regeneration of plants from LTB-containing tobacco hairy roots was readily achieved and re-initiated hairy roots from greenhouse-grown plants showed similar growth and LTB production characteristics as the original hairy root cultures.


Assuntos
Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Enterotoxinas/biossíntese , Enterotoxinas/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanaceae/classificação , Solanaceae/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanaceae/genética , Especificidade da Espécie
13.
Plant J ; 66(6): 1053-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21418355

RESUMO

Transcription factors of the plant-specific apetala2/ethylene response factor (AP2/ERF) family control plant secondary metabolism, often as part of signalling cascades induced by jasmonate (JA) or other elicitors. Here, we functionally characterized the JA-inducible tobacco (Nicotiana tabacum) AP2/ERF factor ORC1, one of the members of the NIC2-locus ERFs that control nicotine biosynthesis and a close homologue of ORCA3, a transcriptional activator of alkaloid biosynthesis in Catharanthus roseus. ORC1 positively regulated the transcription of several structural genes coding for the enzymes involved in nicotine biosynthesis. Accordingly, overexpression of ORC1 was sufficient to stimulate alkaloid biosynthesis in tobacco plants and tree tobacco (Nicotiana glauca) root cultures. In contrast to ORCA3 in C. roseus, which needs only the GCC motif in the promoters of the alkaloid synthesis genes to induce their expression, ORC1 required the presence of both GCC-motif and G-box elements in the promoters of the tobacco nicotine biosynthesis genes for maximum transactivation. Correspondingly, combined application with the JA-inducible Nicotiana basic helix-loop-helix (bHLH) factors that bind the G-box element in these promoters enhanced ORC1 action. Conversely, overaccumulation of JAZ repressor proteins that block bHLH activity reduced ORC1 functionality. Finally, the activity of both ORC1 and bHLH proteins was post-translationally upregulated by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated protein kinase kinase, JA-factor stimulating MAPKK1 (JAM1), was identified. This study highlights the complexity of the molecular machinery involved in the regulation of tobacco alkaloid biosynthesis and provides mechanistic insights about its transcriptional regulators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Nicotiana/metabolismo , Nicotina/biossíntese , Complexo de Reconhecimento de Origem/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/genética , Catharanthus/metabolismo , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Complexo de Reconhecimento de Origem/genética , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Nicotiana/genética , Ativação Transcricional
14.
Phytochemistry ; 72(4-5): 344-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21232776

RESUMO

In leaf and root tissues of Nicotiana tabacum L. (common tobacco), nicotine is by far the predominant pyridine alkaloid, with anatabine representing only a minor component of the total alkaloid fraction. The pyrrolidine ring of nicotine is derived from the diamine putrescine, which can be synthesized either directly from ornithine via the action of ODC, or from arginine via a three enzymatic step process, initiated by ADC. Previous studies in this laboratory have shown that antisense-mediated down-regulation of ADC transcript levels has only a minor effect upon the alkaloid profile of transgenic N. tabacum. In the present study, RNAi methodology was used to down-regulate ODC transcript levels in N. tabacum, using both the Agrobacterium rhizogenes-derived hairy root culture system, and also disarmed Agrobacterium tumefaciens to generate intact transgenic plants. We observed a marked effect upon the alkaloid profile of transgenic tissues, with ODC transcript down-regulation leading to reduced nicotine and increased anatabine levels in both cultured hairy roots and intact greenhouse-grown plants. Treatment of ODC-RNAi hairy roots with low levels of the wound-associated hormone methyl jasmonate, or wounding of transgenic plants by removal of apices - both treatments which normally stimulate nicotine synthesis in tobacco - did not restore capacity for normal nicotine synthesis in transgenic tissue but did lead to markedly increased levels of anatabine. We conclude that the ODC mediated route to putrescine plays an important role in determining the normal nicotine:anatabine profile in N. tabacum and is essential in allowing N. tabacum to increase nicotine levels in response to wound-associated stress.


Assuntos
Alcaloides/análise , Nicotiana/genética , Nicotina/análise , Plantas Geneticamente Modificadas/genética , Piridinas/análise , Alcaloides/química , Estrutura Molecular , Nicotina/química , Ornitina Descarboxilase/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Piridinas/química , Interferência de RNA , Sementes/química , Sementes/metabolismo , Sementes/microbiologia , Nicotiana/química
15.
Plant Mol Biol ; 69(3): 299-312, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19011764

RESUMO

Nicotiana glauca (Argentinean tree tobacco) is atypical within the genus Nicotiana, accumulating predominantly anabasine rather than nicotine and/or nornicotine as the main component of its leaf pyridine alkaloid fraction. The current study examines the role of the A622 gene from N. glauca (NgA622) in alkaloid production and utilises an RNAi approach to down-regulate gene expression and diminish levels of A622 protein in transgenic tissues. Results indicate that RNAi-mediated reduction in A622 transcript levels markedly reduces the capacity of N. glauca to produce anabasine resulting in plants with scarcely any pyridine alkaloids in leaf tissues, even after damage to apical tissues. In addition, analysis of hairy roots containing the NgA622-RNAi construct shows a substantial reduction in both anabasine and nicotine levels within these tissues, even if stimulated with methyl jasmonate, indicating a role for the A622 enzyme in the synthesis of both alkaloids in roots of N. glauca. Feeding of Nicotinic Acid (NA) to hairy roots of N. glauca containing the NgA622-RNAi construct did not restore capacity for synthesis of anabasine or nicotine. Moreover, treatment of these hairy root lines with NA did not lead to an increase in anatabine levels, unlike controls. Together, these results strongly suggest that A622 is an integral component of the final enzyme complex responsible for biosynthesis of all three pyridine alkaloids in Nicotiana.


Assuntos
Alcaloides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/fisiologia , Piridinas/metabolismo , Western Blotting , Nicotina/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA
16.
Funct Plant Biol ; 36(7): 589-599, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688672

RESUMO

Sporobolus stapfianus Gandoger, one of ~40 known 'anabiotic'grass species (i.e. 'able to regain vital activity from a state of latent life'), is the most versatile tool for research into desiccation tolerance in vegetative grass tissue. Current knowledge on this species is presented, including the features that suit it for investigations into the plant's ability to survive dehydration of its leaf protoplasm. The main contributors to desiccation tolerance in S. stapfianus leaves appear to be: accumulation during dehydration of protectants of membranes and proteins; mechanisms limiting oxidative damage; a retention of protein synthetic activity in late stages of drying that is linked with changes in gene expression and in the proteomic array; and an ability to retain net synthesis of ATP during drying. S. stapfianus exemplifies an advanced stage of an evolutionary trend in desiccation tolerant plants towards increased importance of the dehydration phase (for induction of tolerance, for synthesis of protectants and for proteomic changes).

17.
Phytochemistry ; 68(19): 2465-79, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17612583

RESUMO

In species of the genus Nicotiana, as in most plants, the important polyamine precursor putrescine can be derived from the amino acids ornithine and/or arginine via the activity of ornithine decarboxylase (ODC) and/or arginine decarboxylase (ADC), respectively. Nicotiana species also utilize putrescine to provide the pyrollidine ring of the defensive alkaloid nicotine and its derivatives. Previous biochemical studies, involving callus tissues cultured in vitro, suggested that the ADC-mediated route to putrescine is used preferentially to provide the putrescine that is utilized for nicotine synthesis in N. tabacum. To ascertain if this is the case in N. tabacum plants, where nicotine synthesis takes place exclusively in roots, we used an antisense approach to diminish ADC activity in transformed roots which were cultured in vitro. Several independent lines were recovered possessing markedly reduced levels of ADC transcript and ADC activity compared to controls. Transcript levels of other genes in this general area of metabolism, including ODC, were not altered as a result of the antisense-mediated downregulation of ADC. Concentrations of nicotine were comparable in antisense-ADC and control hairy root lines throughout most of their respective culture cycles, except at the latter stages of growth when the nicotine content of antisense-ADC hairy root lines was observed to be approximately 20% lower than in controls. Levels of anatabine, the second most abundant alkaloid typically found in N. tabacum, which is not derived from putrescine, were slightly elevated in two antisense-ADC hairy root lines at the latter stages of their culture cycles compared to controls. Comparison of alkaloid levels in leaves of transgenic plants that were regenerated from separate antisense-ADC and control transformed root lines indicated that the former possessed slightly elevated levels of anatabine but did not contain average levels of leaf nicotine that were different from that of controls. Our overall conclusion is that the ADC mediated route to putrescine plays a role, but is not of prime importance, in providing the pyrollidine ring which is used for nicotine synthesis in cultured hairy roots of N. tabacum and in roots of healthy greenhouse-grown plants.


Assuntos
Alcaloides/metabolismo , Carboxiliases/antagonistas & inibidores , Nicotiana/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Raízes de Plantas/efeitos dos fármacos , Northern Blotting , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/enzimologia
18.
Funct Plant Biol ; 34(7): 589-600, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689387

RESUMO

The desiccation tolerant grass Sporobolus stapfianus Gandoger can modulate cellular processes to prevent the imposition of irreversible damage to cellular components by water deficit. The cellular processes conferring this ability are rapidly attenuated by increased water availability. This resurrection plant can quickly restore normal metabolism. Even after loss of more than 95% of its total water content, full rehydration and growth resumption can occur within 24 h. To study the molecular mechanisms of desiccation tolerance in S. stapfianus, a cDNA library constructed from dehydration-stressed leaf tissue, was differentially screened in a manner designed to identify genes with an adaptive role in desiccation tolerance. Further characterisation of four of the genes isolated revealed they are strongly up-regulated by severe dehydration stress and only in desiccation-tolerant tissue, with three of these genes not being expressed at detectable levels in hydrated or dehydrating desiccation-sensitive tissue. The nature of the putative proteins encoded by these genes are suggestive of molecular processes associated with protecting the plant against damage caused by desiccation and include a novel LEA-like protein, and a pore-like protein that may play an important role in peroxisome function during drought stress. A third gene product has similarity to a nuclear-localised protein implicated in chromatin remodelling. In addition, a UDPglucose glucosyltransferase gene has been identified that may play a role in controlling the bioactivity of plant hormones or secondary metabolites during drought stress.

19.
Funct Plant Biol ; 32(4): 305-320, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689133

RESUMO

Synthesis of the wound-inducible alkaloid, nicotine, in roots of the allotetraploid species Nicotiana tabacum L. is strongly influenced by the presence of two non-allelic genes, A and B. Together, these loci affect baseline transcript levels of genes dedicated to secondary metabolism (e.g. PMT and A622) as well as genes with roles in separate areas of primary metabolism (e.g. ODC, ADC, SAMS - polyamines; QPT - pyridine nucleotide cycle). Experiments comparing high alkaloid variety NC 95 (AABB genotype) and near-isogenic low alkaloid N. tabacum variety LAFC 53 (aabb genotype) indicate that together, mutations in the A and B loci diminish, but do not ablate, the propensity of roots to increase transcript levels of genes involved in alkaloid metabolism after damage to aerial tissues or direct treatment with the wound hormone, methyl jasmonate. Accordingly, roots of aabb genotype can increase their nicotine content somewhat in response to these treatments.

20.
Funct Plant Biol ; 31(7): 721-729, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32688942

RESUMO

We determined the capacity of three Nicotiana (Solanaceae) species with very different alkaloid profiles (Nicotiana sylvestris Speg & Comes, Nicotiana alata Link & Otto and Nicotiana glauca Grah.) to increase their alkaloid contents in both leaf and root tissues following foliage damage. We also investigated the transcriptional responses of genes encoding enzymes important for alkaloid biosynthesis, namely quinolinate phosphoribosyltransferase (QPT), putrescine N-methyltransferase (PMT), ornithine decarboxylase (ODC) and the putative alkaloid biosynthetic gene A622. In response to wounding of foliage in the well studied 'model' species N. sylvestris, a rise, approximately 2-fold, in leaf nicotine levels was observed several days after a 4-5-fold increase in the transcript levels of all genes in the roots. In contrast, leaf tissues of the ornamental tobacco N. alata showed very low levels of any pyridine alkaloid, even when analysed 1 week after wounding, correlating with a general lack of transcript abundance representing any of these genes in leaves or roots following foliage damage. However, addition of methyl jasmonate to cultured roots of N. alata did produce elevated levels of nicotine and anatabine raising the possibility that components of the leaf-root wound signalling system in N. alata are different from those in N. sylvestris. Wounding of the tree tobacco N. glauca, was followed by a 2-fold increase in anabasine levels several days later. This increase followed a large rise in transcript levels of ODC, QPT and A622, though not PMT, in wounded leaves, but not in non-wounded leaves or roots. These data support the hypothesis that N. glauca is able to produce increased anabasine levels following wounding in its foliage, setting it apart from N. sylvestris where induced alkaloid production takes place in roots. We discuss the possibility that increased transcript levels detected by ODC and A622 probes play important roles in anabasine synthesis in N. glauca.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...