Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861479

RESUMO

Immune modulation through the intracellular delivery of nucleoside-modified mRNA to immune cells is an attractive approach for in vivo immunoengineering, with applications in infectious disease, cancer immunotherapy, and beyond. Lipid nanoparticles (LNPs) have come to the fore as a promising nucleic acid delivery platform, but LNP design criteria remain poorly defined, making the rate-limiting step for LNP discovery the screening process. In this study, we employed high-throughput in vivo LNP screening based on molecular barcoding to investigate the influence of LNP composition on immune tropism with applications in vaccines and systemic immunotherapies. Screening a large LNP library under both intramuscular (i.m.) and intravenous (i.v.) injection, we observed differential influences on LNP uptake by immune populations across the two administration routes, gleaning insight into LNP design criteria for in vivo immunoengineering. In validation studies, the lead LNP formulation for i.m. administration demonstrated substantial mRNA translation in the spleen and draining lymph nodes with a more favorable biodistribution profile than LNPs formulated with the clinical standard ionizable lipid DLin-MC3-DMA (MC3). The lead LNP formulations for i.v. administration displayed potent immune transfection in the spleen and peripheral blood, with one lead LNP demonstrating substantial transfection of splenic dendritic cells and another inducing substantial transfection of circulating monocytes. Altogether, the immunotropic LNPs identified by high-throughput in vivo screening demonstrated significant promise for both locally- and systemically-delivered mRNA and confirmed the value of the LNP design criteria gleaned from our screening process, which could potentially inform future endeavors in mRNA vaccine and immunotherapy applications.

2.
J Control Release ; 371: 455-469, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38789090

RESUMO

The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a âˆ¼twofold increase in mRNA delivery in murine placentas and a âˆ¼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.

3.
Nat Commun ; 15(1): 1884, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424061

RESUMO

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.


Assuntos
DNA , Nanopartículas , Feminino , Animais , Camundongos , RNA Mensageiro/genética , Pulmão , Lipídeos
4.
Adv Mater ; : e2313226, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419362

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.

6.
Theranostics ; 14(1): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164140

RESUMO

Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.


Assuntos
Ácidos e Sais Biliares , Nanopartículas , RNA Mensageiro/metabolismo , Lipídeos , Colesterol , Ácidos Cólicos , RNA Interferente Pequeno/genética
7.
Small ; 20(11): e2304378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072809

RESUMO

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Assuntos
Nanopartículas , Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Lipossomos , Transfecção , Anticorpos , Engenharia Celular , RNA Interferente Pequeno
8.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091634

RESUMO

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Camundongos , Animais , RNA Interferente Pequeno , Distribuição Tecidual , Encéfalo , Imunidade , Quimiocina CXCL12/genética
9.
Nano Lett ; 23(22): 10179-10188, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906000

RESUMO

Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells available in circulation, harvesting and culturing Treg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4+ T cells can result in a Treg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4+ T cells. We successfully engineer CD4+ T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Autoimunidade , Doenças Autoimunes/terapia , Doenças Autoimunes/genética , Imunossupressores/uso terapêutico , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
10.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696939

RESUMO

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Linfócitos T
11.
Small ; : e2303568, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537704

RESUMO

During healthy pregnancy, the placenta develops to allow for exchange of nutrients and oxygen between the mother and the fetus. However, placental dysregulation can lead to several pregnancy disorders, such as preeclampsia and fetal growth restriction. Recently, lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) has been explored as a promising approach to treat these disorders. Here, iterative libraries of LNPs with varied excipient molar ratios are screened in vitro for enhanced mRNA delivery to placental cells with minimal cytotoxicity when compared to an LNP formulation with a standard excipient molar ratio. LNP C5, the top formulation identified by these screens, demonstrates a fourfold increase in mRNA delivery in vitro compared to the standard formulation. Intravenous administration of LNP C5 to pregnant mice achieves improved in vivo placental mRNA delivery compared to the standard formulation and mediates mRNA delivery to placental trophoblasts, endothelial cells, and immune cells. These results identify LNP C5 as a promising optimized LNP formulation for placental mRNA delivery and further validates the design of experiments strategy for LNP excipient optimization to enhance mRNA delivery to cell types and organs of interest.

12.
Adv Healthc Mater ; 12(30): e2301515, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602495

RESUMO

The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.


Assuntos
Nanopartículas , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptor de Morte Celular Programada 1/genética , Inibidores de Checkpoint Imunológico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Engenharia Celular , Linhagem Celular Tumoral
13.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
14.
PLoS Biol ; 21(4): e3002105, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093850

RESUMO

The promise of therapeutic nucleic acids has long been tempered by difficulty in overcoming biological barriers to their delivery. The past two decades have seen the development of ionizable lipid nanoparticles as a vehicle for nucleic acid delivery and their translation to the clinic.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipossomos
17.
J Am Chem Soc ; 145(8): 4691-4706, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789893

RESUMO

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nonviral platform for mRNA delivery. While they have been explored for applications including vaccines and gene editing, LNPs have not been investigated for placental insufficiency during pregnancy. Placental insufficiency is caused by inadequate blood flow in the placenta, which results in increased maternal blood pressure and restricted fetal growth. Therefore, improving vasodilation in the placenta can benefit both maternal and fetal health. Here, we engineered ionizable LNPs for mRNA delivery to the placenta with applications in mediating placental vasodilation. We designed a library of ionizable lipids to formulate LNPs for mRNA delivery to placental cells and identified a lead LNP that enables in vivo mRNA delivery to trophoblasts, endothelial cells, and immune cells in the placenta. Delivery of this top LNP formulation encapsulated with VEGF-A mRNA engendered placental vasodilation, demonstrating the potential of mRNA LNPs for protein replacement therapy during pregnancy to treat placental disorders.


Assuntos
Nanopartículas , Insuficiência Placentária , Feminino , Gravidez , Humanos , Placenta/metabolismo , RNA Mensageiro/metabolismo , Células Endoteliais/metabolismo , Lipídeos , Nanopartículas/metabolismo , RNA Interferente Pequeno/genética
18.
Tissue Eng Part C Methods ; 28(4): 137-147, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245975

RESUMO

Manual tissue decellularization is an onerous process that requires the application of many sequential treatments by an operator and can be prone to user error and result variability. While automated decellularization devices have been previously reported, with advances being made in recent years toward open-source platforms, previous automated decellularization devices have been reliant on hardware or software components that are closed-source and proprietary. The aim of the current work was to develop and validate a full open-source automated decellularization system to be available for others to adopt. The open-source decellularization apparatus is a low-cost (<$2000) device that may easily be adapted to an array of decellularization protocols, with an example parts' list provided herein. The automated decellularization device was used to decellularize hyaline cartilage, knee meniscus, and tendon tissues. Cartilage, meniscus, and tendon tissue demonstrated 97%, 99%, and 96% reduction in DNA content after decellularization, respectively, and with effective decellularization confirmed visually via histology. High retentions of glycosaminoglycans (GAGs), collagen, and other proteins were observed in meniscus and tendon following decellularization. Results with manual decellularization with meniscus tissue were consistent with the automated decellularization process. Decellularized cartilage (DCC) demonstrated a 34% decrease in GAG content, while the protein and collagen content did not significantly change. The current study demonstrated that native-like decellularized tissues were produced reproducibly using the reported open-source automated decellularization platform, providing an adoptable platform for production of decellularized tissues by others. Impact statement Decellularized extracellular matrix (ECM)-based materials are appealing for tissue engineering, but production of these materials is historically time-intensive, tedious, and prone to user error. Adoption of an automated system may be a barrier for many research groups due to cost and complexity. In this article, a low-cost open-source platform for automated decellularization is presented. This method is validated by decellularizing porcine musculoskeletal tissues and demonstrating the native-like compositional properties of these decellularized tissues. The ability to produce decellularized tissue in an automated manner is useful for further research of ECM-based materials and potential clinical applications.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Animais , Cartilagem , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais
19.
Nano Lett ; 22(1): 533-542, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34669421

RESUMO

Viral engineered chimeric antigen receptor (CAR) T cell therapies are potent, targeted cancer immunotherapies, but their permanent CAR expression can lead to severe adverse effects. Nonviral messenger RNA (mRNA) CAR T cells are being explored to overcome these drawbacks, but electroporation, the most common T cell transfection method, is limited by cytotoxicity. As a potentially safer nonviral delivery strategy, here, sequential libraries of ionizable lipid nanoparticle (LNP) formulations with varied excipient compositions were screened in comparison to a standard formulation for improved mRNA delivery to T cells with low cytotoxicity, revealing B10 as the top formulation with a 3-fold increase in mRNA delivery. When compared to electroporation in primary human T cells, B10 LNPs induced comparable CAR expression with reduced cytotoxicity while demonstrating potent cancer cell killing. These results demonstrate the impact of excipient optimization on LNP performance and support B10 LNPs as a potent mRNA delivery platform for T cell engineering.


Assuntos
Nanopartículas , Humanos , Lipossomos/metabolismo , RNA Mensageiro/farmacologia , Linfócitos T/metabolismo
20.
J Control Release ; 341: 616-633, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742747

RESUMO

Congenital disorders resulting in pathological protein deficiencies are most often treated postnatally with protein or enzyme replacement therapies. However, treatment of these disorders in utero before irreversible disease onset could significantly minimize disease burden, morbidity, and mortality. One possible strategy for the prenatal treatment of congenital disorders is in utero delivery of messenger RNA (mRNA). mRNA is a nucleic acid therapeutic that has previously been investigated as a platform for protein replacement therapies and gene editing technologies. While viral vectors have been explored to induce intracellular expression of mRNA, they are limited in their clinical application due to risks associated with immunogenicity and genomic integration. As an alternative to viral vectors, safe and efficient in utero mRNA delivery can be achieved using ionizable lipid nanoparticles (LNPs). While LNPs have demonstrated potent in vivo mRNA delivery to the liver following intravenous administration, intra-amniotic delivery has the potential to deliver mRNA to cells and tissues beyond those in the liver, such as in the skin, lung, and digestive tract. However, LNP stability in fetal amniotic fluid and how this stability affects mRNA delivery has not been previously investigated. Here, we engineered a library of LNPs using orthogonal design of experiments (DOE) to evaluate how LNP structure affects their stability in amniotic fluid ex utero and whether a lead candidate identified from these stability measurements enables intra-amniotic mRNA delivery in utero. We used a combination of techniques including dynamic light scattering (DLS), transmission electron microscopy (TEM), and chromatography followed by protein content quantification to screen LNP stability in amniotic fluids. These results identified multiple lead LNP formulations that are highly stable in amniotic fluids ranging from small animals to humans, including mouse, sheep, pig, and human amniotic fluid samples. We then demonstrate that stable LNPs from the ex utero screen in mouse amniotic fluid enabled potent mRNA delivery in primary fetal lung fibroblasts and in utero following intra-amniotic injection in a murine model. This exploration of ex utero stability in amniotic fluids demonstrates a means by which to identify novel LNP formulations for prenatal treatment of congenital disorders via in utero mRNA delivery.


Assuntos
Líquido Amniótico , Nanopartículas , Animais , Lipossomos/química , Camundongos , Nanopartículas/química , RNA Mensageiro , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...