Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 109(2): 407-14, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200877

RESUMO

Embryonic morphogenesis takes place via a series of dramatic collective cell movements. The mechanisms that coordinate these intricate structural transformations across an entire organism are not well understood. In this study, we used gentle mechanical deformation of developing zebrafish embryos to probe the role of physical forces in generating long-range intercellular coordination during epiboly, the process in which the blastoderm spreads over the yolk cell. Geometric distortion of the embryo resulted in nonuniform blastoderm migration and realignment of the anterior-posterior (AP) axis, as defined by the locations at which the head and tail form, toward the new long axis of the embryo and away from the initial animal-vegetal axis defined by the starting location of the blastoderm. We found that local alterations in the rate of blastoderm migration correlated with the local geometry of the embryo. Chemical disruption of the contractile ring of actin and myosin immediately vegetal to the blastoderm margin via Ca(2+) reduction or treatment with blebbistatin restored uniform migration and eliminated AP axis reorientation in mechanically deformed embryos; it also resulted in cellular disorganization at the blastoderm margin. Our results support a model in which tension generated by the contractile actomyosin ring coordinates epiboly on both the organismal and cellular scales. Our observations likewise suggest that the AP axis is distinct from the initial animal-vegetal axis in zebrafish.


Assuntos
Movimento Celular/fisiologia , Peixe-Zebra/embriologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Movimento Celular/efeitos dos fármacos , Simulação por Computador , Espaço Extracelular/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Microscopia Confocal , Modelos Biológicos , Miosinas/metabolismo , Estimulação Física
2.
Lab Chip ; 11(1): 14-22, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21085736

RESUMO

Games are a significant and defining part of human culture, and their utility beyond pure entertainment has been demonstrated with so-called 'serious games'. Biotechnology--despite its recent advancements--has had no impact on gaming yet. Here we propose the concept of 'biotic games', i.e., games that operate on biological processes. Utilizing a variety of biological processes we designed and tested a collection of games: 'Enlightenment', 'Ciliaball', 'PAC-mecium', 'Microbash', 'Biotic Pinball', 'POND PONG', 'PolymerRace', and 'The Prisoner's Smellemma'. We found that biotic games exhibit unique features compared to existing game modalities, such as utilizing biological noise, providing a real-life experience rather than virtual reality, and integrating the chemical senses into play. Analogous to video games, biotic games could have significant conceptual and cost-reducing effects on biotechnology and eventually healthcare; enable volunteers to participate in crowd-sourcing to support medical research; and educate society at large to support personal medical decisions and the public discourse on bio-related issues.


Assuntos
Fenômenos Biológicos , Dispositivos Lab-On-A-Chip , Jogos e Brinquedos , Desenho de Equipamento , Humanos , Lógica , Paramecium caudatum/efeitos dos fármacos , Paramecium caudatum/fisiologia , Reação em Cadeia da Polimerase , Jogos de Vídeo , Leveduras/citologia , Leveduras/crescimento & desenvolvimento
3.
Inorg Chem ; 50(5): 1931-41, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21188979

RESUMO

The preparation of a resin-supported boron-scorpionate ligand and its nickel(II) coordination complexes are reported. The supported ligand is prepared as its potassium salt, making it a general reagent suitable for chelation of any transition metal ion. Resin-immobilized benzotriazole (Bead-btz) reacted cleanly with KTp* (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) by heterocycle metathesis in warm dimethylformamide (DMF) to yield bead-Tp'K, {resin-btz(H)B(pz*)(2)}K. Significantly, bead-Tp'K readily bound nickel(II) from simple salts with minimal leaching of the nickel ion. Bead-Tp'NiNO(3) reacts further with cysteine thiolate (ethyl ester), imparting the deep green color to the beads characteristic of a Tp(R)NiCysEt coordination sphere. Bead-Tp'NiCysEt exhibited an oxygen sensitivity similar to Tp*NiCysEt in solution (Inorg. Chem. 1999, p 5690) and also independently verified for a selenocystamine analogue, Tp*NiSeCysAm. Addition of fresh cysteine thiolate ethyl ester to oxidized bead-Tp'NiCysEt reproduced the original green color. Heterocycle metathesis was also used to prepare KTp' as a white solid. Reaction with nickel(II) gave (Tp')(2)Ni, separable into two different isomers. The air-sensitive molybdenum(0) complex, [PPh(4)][Tp'Mo(CO)(3)], was also prepared and the C(s) complex symmetry demonstrated by infrared and (13)C NMR spectroscopies. Immobilized TpmMo(CO)(3) was prepared from the previously reported resin-supported tris(pyrazolyl)methane. In contrast to its weak coordination of nickel(II) (Inorg. Chem. 2009, p 3535), bead-Tpm proved a strong chelate toward this second row metal. The supported scorpionates described here should find use in studies of selective metal-protein binding, metalloprotein modeling, and heterogeneous catalysis, and render such scorpionate applications amenable to combinatorial methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...