Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
iScience ; 26(7): 107228, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485372

RESUMO

Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.

3.
J Phys Chem B ; 127(4): 884-898, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693159

RESUMO

The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Projetos de Pesquisa , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/química , Conformação Molecular , Aminoácidos , Conformação Proteica
4.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
5.
Elife ; 112022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069777

RESUMO

The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by PDZ3, SH3, and Guanylate Kinase domains, regulate PSD-95 activity. Here we combined discrete molecular dynamics and single molecule Förster resonance energy transfer (FRET) to characterize the PSG supramodule, with time resolution spanning picoseconds to seconds. We used a FRET network to measure distances in full-length PSD-95 and model the conformational ensemble. We found that PDZ3 samples two conformational basins, which we confirmed with disulfide mapping. To understand effects on activity, we measured binding of the synaptic adhesion protein neuroligin. We found that PSD-95 bound neuroligin well at physiological pH while truncated PDZ3 bound poorly. Our hybrid structural models reveal how the supertertiary context of PDZ3 enables recognition of this critical synaptic ligand.


Assuntos
Dissulfetos , Fatores de Transcrição , Ligantes , Proteína 4 Homóloga a Disks-Large/química , Guanilato Quinases , Neurotransmissores , Ligação Proteica , Sítios de Ligação
6.
Cell Rep Phys Sci ; 2(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888535

RESUMO

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.

7.
RNA ; 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863818

RESUMO

Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown. Therefore, we integrated single-molecule multiparameter fluorescence and force spectroscopy with atomistic molecular dynamics simulations and found that conformational transitions within the aptamer domain's sensor helices associated with TPP and Mg2+ ligand binding occurred between at least five different ensembles on timescales ranging from µs to ms. These dynamics are orders of magnitude faster than the 10 second-timescale folding kinetics associated with expression-state switching in the switch sequence. Together, our results show that a TPP and Mg2+ dependent mechanism determines dynamic configurational state ensemble switching of the aptamer domain's sensor helices that regulates the stability of the switch helix, which ultimately may lead to the expression-inhibiting state of the riboswitch. Additionally, we propose that two pathways exist for ligand recognition and that this mechanism underlies a kinetic rheostat-like behavior of the Arabidopsis thaliana TPP riboswitch.

8.
J Mol Biol ; 432(19): 5411-5429, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32735805

RESUMO

Forkhead box P (FoxP) proteins are unique transcription factors that spatiotemporally regulate gene expression by tethering two chromosome loci together via functional domain-swapped dimers formed through their DNA-binding domains. Further, the differential kinetics on this dimerization mechanism underlie an intricate gene regulation network at physiological conditions. Nonetheless, poor understanding of the structural dynamics and steps of the association process impedes to link the functional domain swapping to human-associated diseases. Here, we have characterized the DNA-binding domain of human FoxP1 by integrating single-molecule Förster resonance energy transfer and hydrogen-deuterium exchange mass spectrometry data with molecular dynamics simulations. Our results confirm the formation of a previously postulated domain-swapped (DS) FoxP1 dimer in solution and reveal the presence of highly populated, heterogeneous, and locally disordered dimeric intermediates along the dimer dissociation pathway. The unique features of FoxP1 provide a glimpse of how intrinsically disordered regions can facilitate domain swapping oligomerization and other tightly regulated association mechanisms relevant in biological processes.


Assuntos
DNA/metabolismo , Fatores de Transcrição Forkhead/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Repressoras/química , Sítios de Ligação , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Repressoras/metabolismo
9.
Front Biosci (Landmark Ed) ; 25(1): 43-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585877

RESUMO

Integrative and hybrid methods have the potential to bridge long-standing knowledge gaps in structural biology. These methods will have a prominent role in the future of the field as we make advances toward a complete, unified representation of biology that spans the molecular and cellular scales. The Department of Physics and Astronomy at Clemson University hosted The Future of Integrative Structural Biology workshop on April 29, 2017 and partially sponsored by partially sponsored by a program of the Oak Ridge Associated Universities (ORAU). The workshop brought experts from multiple structural biology disciplines together to discuss near-term steps toward the goal of a molecular atlas of the cell. The discussion focused on the types of structural data that should be represented, how this data should be represented, and how the time domain might be incorporated into such an atlas. The consensus was that an explorable, map-like Virtual Cell, containing both spatial and temporal data bridging the atomic and cellular length scales obtained by multiple experimental methods, represents the best path toward a complete atlas of the cell.


Assuntos
Microscopia Crioeletrônica/métodos , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Proteínas/química , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Previsões , Substâncias Macromoleculares/ultraestrutura , Proteínas/ultraestrutura , Pesquisa/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...