Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(1): e202111461, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730266

RESUMO

Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.


Assuntos
Ansiolíticos/metabolismo , Materiais Biocompatíveis/metabolismo , Sistema Nervoso Central/metabolismo , Ouro/metabolismo , Animais , Ansiolíticos/química , Materiais Biocompatíveis/química , Catálise , Sistema Nervoso Central/química , Ouro/química , Estrutura Molecular , Tamanho da Partícula , Peixe-Zebra
2.
Angew Chem Weinheim Bergstr Ger ; 134(1): e202111461, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38505566

RESUMO

Being recognized as the best-tolerated of all metals, the catalytic potential of gold (Au) has thus far been hindered by the ubiquitous presence of thiols in organisms. Herein we report the development of a truly-catalytic Au-polymer composite by assembling ultrasmall Au-nanoparticles at the protein-repelling outer layer of a co-polymer scaffold via electrostatic loading. Illustrating the in vivo-compatibility of the novel catalysts, we show their capacity to uncage the anxiolytic agent fluoxetine at the central nervous system (CNS) of developing zebrafish, influencing their swim pattern. This bioorthogonal strategy has enabled -for the first time- modification of cognitive activity by releasing a neuroactive agent directly in the brain of an animal.

3.
Nat Commun ; 12(1): 2369, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888691

RESUMO

Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Corantes Fluorescentes/administração & dosagem , Glioblastoma/tratamento farmacológico , Compostos Organosselênicos/administração & dosagem , Fotoquimioterapia/métodos , Animais , Técnicas de Cocultura , Corantes Fluorescentes/efeitos adversos , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Glioblastoma/patologia , Humanos , Microscopia Intravital , Luz , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia de Fluorescência , Compostos Organosselênicos/efeitos adversos , Compostos Organosselênicos/química , Compostos Organosselênicos/efeitos da radiação , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
4.
Chemistry ; 24(63): 16783-16790, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30187973

RESUMO

SN-38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN-38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN-38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium-mediated activation. Blocking the phenolic OH of SN-38 with a 2,6-bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44-fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd-activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics-sequentially or simultaneously-by the same bioorthogonal catalyst to increase anticancer activity.

5.
Angew Chem Int Ed Engl ; 56(41): 12548-12552, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28699691

RESUMO

Recent advances in bioorthogonal catalysis are increasing the capacity of researchers to manipulate the fate of molecules in complex biological systems. A bioorthogonal uncaging strategy is presented, which is triggered by heterogeneous gold catalysis and facilitates the activation of a structurally diverse range of therapeutics in cancer cell culture. Furthermore, this solid-supported catalytic system enabled locally controlled release of a fluorescent dye into the brain of a zebrafish for the first time, offering a novel way to modulate the activity of bioorthogonal reagents in the most fragile and complex organs.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Corantes Fluorescentes/administração & dosagem , Ouro/química , Células A549 , Animais , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Catálise , Corantes Fluorescentes/farmacocinética , Humanos , Peixe-Zebra
6.
Zebrafish ; 13(6): 523-534, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27779463

RESUMO

Glioblastoma multiforme is the most common and deadliest form of brain cancer. Glioblastomas are infiltrated by a high number of microglia, which promote tumor growth and surrounding tissue invasion. However, it is unclear how microglia and glioma cells physically interact and if there are differences, depending on glioma cell type. Hence, we have developed a novel live imaging assay to study microglia-glioma interactions in vivo in the zebrafish brain. We transplanted well-established human glioblastoma cell lines, U87 and U251, into transgenic zebrafish lines with labelled macrophages/microglia. Our confocal live imaging results show distinct interactions between microglia and U87, as well as U251 glioblastoma cells that differ in number and nature. Importantly these interactions do not appear to be antitumoral as zebrafish microglia do not engulf and phagocytose the human glioblastoma cells. Finally, xenotransplants into the irf8-/- zebrafish mutant that lacks microglia, as well as pharmacological inhibition of the CSF-1 receptor (CSF-1R) on microglia, confirm a prominent role for zebrafish microglia in promoting human glioblastoma cell growth. This new model will be an important tool for drug screening and the development of future immunotherapeutics targeting microglia within glioma.


Assuntos
Glioblastoma/fisiopatologia , Microglia/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Microscopia Confocal , Modelos Animais
7.
Biomaterials ; 34(37): 9352-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24044995

RESUMO

The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects.


Assuntos
Materiais Biocompatíveis/metabolismo , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Ácido Poliglicólico/metabolismo , Alicerces Teciduais/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Adesão Celular , Diferenciação Celular , Células Cultivadas , Humanos , Injeções , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...