Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473816

RESUMO

The term 'gene doping' is used to describe the use of any unauthorized gene therapy techniques. We developed a test for five likely candidate genes for equine gene doping: EPO, FST, GH1, IGF1, and ILRN1. The test is based on real-time polymerase chain reaction (PCR) and includes separate screening and confirmation assays that detect different unique targets in each transgene. For doping material, we used nonviral (plasmid) and viral (recombinant adeno-associated virus) vectors carrying complementary DNA for the targeted genes; the vectors were accurately quantified by digital PCR. To reduce non-specific amplification from genomic DNA observed in some assays, a restriction digest step was introduced in the PCR protocol prior to cycling to cut the amplifiable targets within the endogenous genes. We made the screening stage of the test simpler and faster by multiplexing PCR assays for four transgenes (EPO, FST, IGF1, and ILRN1), while the GH1 assay is performed in simplex. Both stages of the test reliably detect at least 20 copies of each transgene in a background of genomic DNA equivalent to what is extracted from two milliliters of equine blood. The test protocol was documented and tested with equine blood samples provided by an official doping control authority. The developed tests will form the basis for screening official horseracing samples in Australia.


Assuntos
Eritropoetina , Animais , Cavalos/genética , Eritropoetina/genética , Austrália , Plasmídeos , DNA/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Equine Vet J ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272847

RESUMO

Congenital heart defects (CHDs) can have profound and potentially life-threatening consequences on horses' health and performance capability. While CHDs are rare in the general horse population, the Arabian breed is disproportionately overrepresented and thus is widely suspected to be genetically predisposed. This review discusses the most common CHDs in Arabian horses, including ventricular septal defect (VSD), tetralogy of Fallot (TOF), patent duct arteriosus (PDA), tricuspid valve atresia (TVA) and atrial septal defect (ASD). This review also explores how future research into the genetic factors that likely underpin many CHDs can revolutionise the way these disorders are managed in Arabian horses.

3.
Genes (Basel) ; 13(9)2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36140757

RESUMO

The creation of genetically modified horses is prohibited in horse racing as it falls under the banner of gene doping. In this study, we developed a test to detect gene editing based on amplicon sequencing using next-generation sequencing (NGS). We designed 1012 amplicons to target 52 genes (481 exons) and 147 single-nucleotide variants (SNVs). NGS analyses showed that 97.7% of the targeted exons were sequenced to sufficient coverage (depth > 50) for calling variants. The targets of artificial editing were defined as homozygous alternative (HomoALT) and compound heterozygous alternative (ALT1/ALT2) insertion/deletion (INDEL) mutations in this study. Four models of gene editing (three homoALT with 1-bp insertions, one REF/ALT with 77-bp deletion) were constructed by editing the myostatin gene in horse fibroblasts using CRISPR/Cas9. The edited cells and 101 samples from thoroughbred horses were screened using the developed test, which was capable of identifying the three homoALT cells containing 1-bp insertions. Furthermore, 147 SNVs were investigated for their utility in confirming biological parentage. Of these, 120 SNVs were amenable to consistent and accurate genotyping. Surrogate (nonbiological) dams were excluded by 9.8 SNVs on average, indicating that the 120 SNV could be used to detect foals that have been produced by somatic cloning or embryo transfer, two practices that are prohibited in thoroughbred racing and breeding. These results indicate that gene-editing tests that include variant calling and SNV genotyping are useful to identify genetically modified racehorses.


Assuntos
Edição de Genes , Miostatina , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos/genética , Miostatina/genética , Nucleotídeos , Análise de Sequência de DNA
4.
Drug Test Anal ; 14(2): 382-387, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34608764

RESUMO

Gene doping is prohibited for fair competition in human and horse sports. One style of gene doping is the administration of an exogeneous gene, called a transgene, to postnatal humans and horses. Although many transgene detection methods based on quantitative polymerase chain reaction (PCR), including real-time PCR and digital PCR, have been recently developed, it remains difficult to reliably detect low-copy transgenes. In this study, we developed and validated a nested digital PCR method to specifically detect low-copy transgenes. The nested digital PCR consists of (1) preamplification using conventional PCR and (2) droplet digital PCR detection using a hydrolysis probe. Using 5, 10, 20, 60 and 120 transgene copies as template, 496.0, 1089.7, 1820.7, 4313.3 and 7840.0 copies per microlitre, respectively, were detected using our nested digital PCR. Although high concentrations of phenol, proteinase K, ethanol, EDTA, heparin and genomic DNA all inhibited preamplification, their effects on the digital PCR detection were limited. Once preamplification was successful, even substitution of bases within the primers and probes had minimal effects on transgene detection. The nested digital PCR developed in this study successfully detected low-copy transgenes and can be used to perform a qualitative test, indicating its usefulness in the prevention of false positives and false negatives in gene-doping detection.


Assuntos
Dopagem Esportivo , Animais , DNA/genética , Primers do DNA , Dopagem Esportivo/métodos , Dopagem Esportivo/prevenção & controle , Cavalos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transgenes
7.
J Equine Sci ; 31(4): 75-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376443

RESUMO

Gene doping is prohibited in horseracing and equestrian sports. In previous studies, we developed non-targeted transgene and genome editing detection methods based on whole genome resequencing (WGR) using genomic DNA extracted from whole blood. In this study, we aimed to develop a WGR method using DNA extracts from hair roots. Hair roots are a preferred substrate because their collection is less invasive than blood collection. Hair is also easier to store for long periods of time. Although almost all genomic DNA extracted from hair root samples stored for years at room temperature was degraded, the quality of genomic DNA from samples stored for years at refrigerated temperatures (4-8°C) was maintained. High-molecular-weight genomic DNA was isolated from hair roots using a magnetic silica beads method of extraction, enabling WGR from horsehair root extracts. Nucleotide sequencing results and numbers of single-nucleotide polymorphisms and insertions/deletions concurred with those previously reported for WGR of DNA extracted from whole blood. Therefore, we consider that storing hair samples at refrigerated temperatures prevents degradation of DNA, allowing the detection of gene doping in these samples based on WGR. It is likely this finding will also have a deterrent effect, as it is now possible to test horses with archived samples even if they or their parents are deceased. To our knowledge, this is the first report employing WGR on horsehair roots stored for a long term.

8.
Sci Rep ; 10(1): 13153, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753654

RESUMO

Domestic animal populations are often characterised by high rates of inbreeding and low effective population sizes due to selective breeding practices. These practices can result in otherwise rare recessive deleterious alleles drifting to high frequencies, resulting in reduced fertility rates. This study aimed to identify potential recessive lethal haplotypes in the Thoroughbred horse breed, a closed population that has been selectively bred for racing performance. In this study, we identified a haplotype in the LY49B gene that shows strong evidence of being homozygous lethal, despite having high frequencies of heterozygotes in Thoroughbreds and other domestic horse breeds. Variant analysis of whole-genome sequence data identified two SNPs in the 3'UTR of the LY49B gene that may result in loss of function. Analysis of transcriptomic data from equine embryonic tissue revealed that LY49B is expressed in the trophoblast during placentation stage of development. These findings suggest that LY49B may have an essential, but as yet unknown function in the implantation stage of equine development. Further investigation of this region may allow for the development of a genetic test to improve fertility rates in horse populations. Identification of other lethal variants could assist in improving natural levels of fertility in horse populations.


Assuntos
Regiões 3' não Traduzidas , Cruzamento , Haplótipos , Cavalos/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Fertilidade/genética , Estudo de Associação Genômica Ampla , Masculino
9.
BMC Genet ; 21(1): 41, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268877

RESUMO

BACKGROUND: Horses produce only one foal from an eleven-month gestation period, making the maintenance of high reproductive rates essential. Genetic bottlenecks and inbreeding can increase the frequency of deleterious variants, resulting in reduced reproductive levels in a population. In this study we examined the influence of inbreeding levels on foaling rate, gestation length and secondary sex ratio in Australian Thoroughbred mares. We also investigated the genetic change in these traits throughout the history of the breed. Phenotypic data were obtained from 27,262 breeding records of Thoroughbred mares provided by three Australian stud farms. Inbreeding was estimated using the pedigree of each individual dating back to the foundation of the breed in the eighteenth century. RESULTS: While both gestation length and foaling rate were heritable, no measurable effect of inbreeding on either trait was found. However, we did find that the genetic value for both traits had decreased within recent generations. A number of environmental factors also had significant effects on foaling rate and gestation length. Secondary sex ratio had only an extremely small paternal heritable effect and was not susceptible to environmental influences. CONCLUSIONS: In contrast to racing performance, inbreeding had no measurable effect on foaling rate or gestation length in Australian Thoroughbred horses. This could be because the level of inbreeding in the population examined is not high enough to show a discernible effect on reproductive traits. Populations that experience higher levels of inbreeding due to use of artificial reproductive technologies or extremely small population sizes may show a more pronounced reduction in natural foaling rate or gestation length. It is also possible that the intensive management techniques used in the Thoroughbred population masks any negative effects of inbreeding. The decrease in the genetic value of foaling rate is likely to be because horses with unfavourable genetic potential have not yet been selected out of the population. The change in genetic value of gestation length may be due to selective breeding favouring horses with shorter pregnancies. We also found that prioritising the mating of older mares, and avoiding out of season mating could lead to an increased breeding success.


Assuntos
Aptidão Genética/genética , Cavalos/genética , Endogamia , Reprodução/genética , Animais , Cruzamento , Feminino , Linhagem , Gravidez , Razão de Masculinidade
10.
Physiol Rep ; 6(10): e13700, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29845762

RESUMO

The Swedish-Norwegian Coldblooded trotter and the heavier North-Swedish draught horse both descend from the North-Swedish horse, but the Coldblooded trotters have been selected for racing performance while the North-Swedish draught horse is mainly used for agricultural and forestry work. By comparing the genomes of Coldblooded trotters, North-Swedish draught horses and Standardbreds for a large number of single-nucleotide polymorphisms (SNPs), the aim of the study was to identify genetic regions that may be under selection for racing performance. We hypothesized that the selection for racing performance, in combination with unauthorized crossbreeding of Coldblooded trotters and Standardbreds, has created regions in the genome where the Coldblooded trotters and Standardbreds are similar, but differ from the North-Swedish draught horse. A fixation index (Fst) analysis was performed and sliding window Delta Fst values were calculated across the three breeds. Five windows, where the average Fst between Coldblooded trotters and Standardbreds was low and the average Fst between Coldblooded trotters and North-Swedish draught horses was high, were selected for further investigation. Associations between the most highly ranked SNPs and harness racing performance were analyzed in 400 raced Coldblooded trotters with race records. One SNP showed a significant association with racing performance, with the CC genotype appearing to be negatively associated. The SNP identified was genotyped in 1915 horses of 18 different breeds. The frequency of the TT genotype was high in breeds typically used for racing and show jumping while the frequency of the CC genotype was high in most pony breeds and draught horses. The closest gene in this region was the Endothelin3 gene (EDN3), a gene mainly involved in melanocyte and enteric neuron development. Both functional genetic and physiological studies are needed to fully understand the possible impacts of the gene on racing performance.


Assuntos
Endotelina-3/genética , Cavalos/genética , Sequências Reguladoras de Ácido Nucleico , Corrida , Seleção Artificial , Animais , Feminino , Frequência do Gene , Haplótipos , Masculino , Noruega , Polimorfismo de Nucleotídeo Único , Suécia
11.
Sci Rep ; 8(1): 6167, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670190

RESUMO

The Thoroughbred horse has played an important role in both sporting and economic aspects of society since the establishment of the breed in the 1700s. The extensive pedigree and phenotypic information available for the Thoroughbred horse population provides a unique opportunity to examine the effects of 300 years of selective breeding on genetic load. By analysing the relationship between inbreeding and racing performance of 135,572 individuals, we found that selective breeding has not efficiently alleviated the Australian Thoroughbred population of its genetic load. However, we found evidence for purging in the population that might have improved racing performance over time. Over 80% of inbreeding in the contemporary population is accounted for by a small number of ancestors from the foundation of the breed. Inbreeding to these ancestors has variable effects on fitness, demonstrating that an understanding of the distribution of genetic load is important in improving the phenotypic value of a population in the future. Our findings hold value not only for Thoroughbred and other domestic breeds, but also for small and endangered populations where such comprehensive information is not available.


Assuntos
Desempenho Atlético , Efeito Fundador , Cavalos , Depressão por Endogamia , Endogamia , Animais , Austrália , Feminino , Estudos de Associação Genética , Masculino , Linhagem
13.
PLoS One ; 8(2): e55434, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408978

RESUMO

Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3ß, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.


Assuntos
Íntrons , Peptidil Dipeptidase A/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA Complementar/genética , Cavalos , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...