Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17490, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504782

RESUMO

Cockayne syndrome (CS) is an inherited disorder that involves photosensitivity, developmental defects, progressive degeneration and characteristics of premature aging. Evidence indicates primarily nuclear roles for the major CS proteins, CSA and CSB, specifically in DNA repair and RNA transcription. We reveal herein a complex regulation of CSB targeting that involves three major consensus signals: NLS1 (aa467-481), which directs nuclear and nucleolar localization in cooperation with NoLS1 (aa302-341), and NLS2 (aa1038-1055), which seemingly optimizes nuclear enrichment. CSB localization to the nucleolus was also found to be important for full UVC resistance. CSA, which does not contain any obvious targeting sequences, was adversely affected (i.e. presumably destabilized) by any form of truncation. No inter-coordination between the subnuclear localization of CSA and CSB was observed, implying that this aspect does not underlie the clinical features of CS. The E3 ubiquitin ligase binding partner of CSA, DDB1, played an important role in CSA stability (as well as DDB2), and facilitated CSA association with chromatin following UV irradiation; yet did not affect CSB chromatin binding. We also observed that initial recruitment of CSB to DNA interstrand crosslinks is similar in the nucleoplasm and nucleolus, although final accumulation is greater in the former. Whereas assembly of CSB at sites of DNA damage in the nucleolus was not affected by RNA polymerase I inhibition, stable retention at these sites of presumed repair was abrogated. Our studies reveal a multi-faceted regulation of the intranuclear dynamics of CSA and CSB that plays a role in mediating their cellular functions.


Assuntos
Biomarcadores , Núcleo Celular/metabolismo , Síndrome de Cockayne/metabolismo , Sequência de Aminoácidos , Síndrome de Cockayne/etiologia , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Imunofluorescência , Genes Reporter , Humanos , Espaço Intracelular , Mutação , Sinais Direcionadores de Proteínas , Transporte Proteico , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 43(2): 943-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25552414

RESUMO

We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase ß. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polß(+/-) mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations.


Assuntos
Doença de Alzheimer/patologia , DNA Polimerase beta/genética , Reparo do DNA , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Heterozigoto , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...