Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Plant Biol ; 23(1): 588, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001443

RESUMO

Developing sustainable agricultural practices is currently becoming an increasingly relevant challenge. As the worldwide population rises and climate change affects agriculture globally, new and sustainable approaches must be adopted to ensure food security. In this editorial, we invite contributions to a BMC Plant Biology collection on 'Sustainable agriculture,' covering research on the environmental and socioeconomic factors that affect sustainable agricultural practices and their management.


Assuntos
Agricultura , Plantas , Mudança Climática
3.
Virus Res ; 331: 199128, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37149224

RESUMO

Positive-strand RNA viruses replicate their RNA in the viral replication complex, a spherical structure formed by remodeling of host intracellular membranes. This process also requires the interaction between viral membrane-associated replication proteins and host factors. We previously identified the membrane-associated determinant of the replicase of plantago asiatica mosaic virus (PlAMV), a positive-strand RNA virus of the genus Potexvirus, in its methyltransferase (MET) domain, and suggested that its interaction with host factors is required to establish viral replication. Here we identified Nicotiana benthamiana dynamin-related protein 2 (NbDRP2) as an interactor of the MET domain of the PlAMV replicase by co-immunoprecipitation (Co-IP) and mass spectrometry analysis. NbDRP2 is closely related to the DRP2 subfamily proteins in Arabidopsis thaliana, AtDRP2A and AtDRP2B. Confocal microscopy observation and Co-IP confirmed the interaction between the MET domain and NbDRP2. Also, the expression of NbDRP2 was induced by PlAMV infection. PlAMV accumulation was reduced when the expression of NbDRP2 gene was suppressed by virus-induced gene silencing. In addition, PlAMV accumulation was reduced in protoplasts treated with dynamin inhibitor. These results indicate a proviral role of the interaction of NbDRP2 with the MET domain in PlAMV replication.


Assuntos
Arabidopsis , Potexvirus , Potexvirus/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Arabidopsis/genética , Nucleotidiltransferases/metabolismo , Dinaminas/metabolismo , Replicação Viral , Nicotiana
5.
Viruses ; 14(11)2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36423181

RESUMO

Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.


Assuntos
Colletotrichum , Vírus de RNA , Colletotrichum/genética , Filogenia , Japão , RNA Viral/genética , Genômica , RNA de Cadeia Dupla/genética
6.
Front Microbiol ; 13: 930329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090110

RESUMO

Viral diseases in plants have a significant impact on agricultural productivity. Effective detection is needed to facilitate accurate diagnosis and characterization of virus infections essential for crop protection and disease management. For sensitive polymerase chain reaction (PCR)-based methods, it is important to preserve the integrity of nucleic acids in plant tissue samples. This is especially critical when samples are collected from isolated areas, regions distant from a laboratory, or in developing countries that lack appropriate facilities or equipment for diagnostic analyses. RNAlater ® provides effective, reliable sample storage by stabilizing both RNA and DNA in plant tissue samples. Our work indicated that total RNA or DNA extracted from virus-infected leaf samples preserved in RNAlater ® was suitable for reverse transcription polymerase chain reaction (RT-PCR), PCR, Sanger sequencing, high-throughput sequencing (HTS), and enzyme-linked immunosorbent assay (ELISA)-based diagnostic analyses. We demonstrated the effectiveness of this technology using leaf tissue samples from plants with virus symptoms grown in farmers' fields in Bangladesh. The results revealed that RNAlater ® technology was effective for detection and characterization of viruses from samples collected from remote areas and stored for extended periods. Adoption of this technology by developing countries with limited laboratory facilities could greatly increase their capacity to detect and diagnose viral infections in crop plants using modern analytical techniques.

7.
Plant Mol Biol ; 110(6): 469-484, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962900

RESUMO

KEY MESSAGE: Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Patologia Vegetal , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica , Plantas/genética , Tecnologia
8.
Heliyon ; 8(2): e08966, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243086

RESUMO

Wheat is the second-largest cereal crop in Bangladesh and plays an essential role in ensuring the country's food security. Since 2016, there has been a severe epidemic of wheat blast disease in Bangladesh. This research investigated the nutritional context of wheat blast epidemics by analyzing the infected plants and allied soils. We collected blast-infected wheat plants and allied soil samples from six different severely infected regions of the Meherpur district situated in the western part of Bangladesh. The incidence and severity of wheat blast disease in the sampling fields ranged from 84.78 - 95.11% and 82.06-92.19%, respectively. Among the investigated mineral nutrients in plant samples, the concentrations of sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe) and manganese (Mn) were within the acceptable range of the reference values. In contrast, 50% of the plant samples had insufficient phosphorus (P) concentrations, while others were within the critical range. The potassium (K) and copper (Cu) concentrations in more than 33.5% of plants were within the deficient range. The Si concentrations in half of the tested plant samples were below the acceptable level. However, the boron (B) concentration of around 50% of samples was within the toxic range. The total K, Ca, Zn, Fe, Mn, and Cu concentrations of the soils were lower than the reference values. Based on the interpretation of the available soil test values, the concentrations of S, Fe, Mn, and B in most samples were very low. The concentrations of available P, K, Ca, Mg, Zn and Cu in soil samples were higher than the critical limit. There was a negative relationship between K, S, Ca, Mg, Na and Si concentrations with blast incidence and severity. Therefore, this research suggests that certain plant nutrients such as P, K, Cu, B and Si play a vital role in the wheat blast disease epidemic.

9.
Plant Dis ; 103(11): 2920-2924, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31567059

RESUMO

Papaya ringspot virus (PRSV) is the major constraint to papaya (Carica papaya) production in Bangladesh. Disease symptoms occurred in 90 to 100% of the plants surveyed. Full-length genomes of PRSV strains from severely infected papaya plants were determined using the Illumina NextSeq 500 platform, followed by Sanger DNA sequencing of viral genomes obtained by reverse-transcription PCR(RT-PCR). The genome sequences of two distinct PRSV strains, PRSV BD-1 (10,300 bp) and PRSV BD-2 (10,325 bp) were 74 and 83% identical to each other, respectively, at the nucleotide and amino acid levels. PRSV BD-1 and PRSV BD-2 were 74 to 75% and 79 to 88% identical, respectively, to other full-length PRSV sequences at the nucleotide level. Based on phylogenetic analysis, PRSV BD-2 was most closely related to PRSV-Meghalaya (MF356497) from papaya in India. PRSV BD-1 formed a branch distinct from the other PRSV sequences based on nucleotide and amino acid sequence comparisons. Comparisons of the genome sequences of these two strains with other sequenced PRSV genomes indicated two putative recombination events in PRSV BD-2. One recombinant event contained a 2,766-nucleotide fragment highly identical to PRSV-Meghalaya (MF356497). The other recombinant event contained a 5,105-nucleotide fragment highly identical to PRSV-China (KY933061). The occurrence rates of PRSV BD-1 and PRSV BD-2 in the sampled areas of Bangladesh were approximately 19 and 69%, respectively. Plants infected with both strains (11%) exhibited more severe symptoms than plants infected with either strain alone. The full-length genome sequences of these new PRSV strains and their distribution provide important information regarding the dynamics of papaya ringspot virus infections in papaya in Bangladesh.


Assuntos
Carica , Filogenia , Potyvirus , Bangladesh , Carica/virologia , China , Genoma Viral/genética , Índia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/genética
10.
Arch Virol ; 164(6): 1661-1665, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949815

RESUMO

Forty-five papaya samples showing severe leaf curl symptoms were tested by PCR with a degenerate primer set for virus species in the genus Begomovirus. Of these, 29 were positive for tomato leaf curl Bangladesh virus (ToLCBV). The complete genome sequences of ToLCBV (GenBank accession no. MH380003) and its associated tomato leaf curl betasatellite (ToLCB) (MH397223) from papaya isolate Gaz17-Pap were determined and characterized. Defective betasatellites were found in ToLCBV-positive papaya isolates Gaz19-Pap, Gaz20-Pap and Gaz21-Pap. This study confirmed that papaya is a host of ToLCBV, ToLCB, and other defective and recombinant DNA satellites in Bangladesh.


Assuntos
Begomovirus/isolamento & purificação , Carica/virologia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos , Bangladesh , Begomovirus/genética , Begomovirus/patogenicidade , Genoma Viral , Solanum lycopersicum/virologia , Filogenia , Vírus Satélites/genética , Vírus Satélites/isolamento & purificação , Vírus Satélites/patogenicidade
11.
Plant Dis ; 101(12): 1980-1989, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677375

RESUMO

Dasheen mosaic virus (DsMV) is one of the major viruses affecting taro (Colocasia esculenta) production worldwide. Whole genome sequences were determined for two DsMV strains, Hawaii Strain I (KY242358) and Hawaii Strain II (KY242359), from taro in Hawaii. They represent the first full-length coding sequences of DsMV reported from the United States. Hawaii Strains I and II were 77 and 85% identical, respectively, with other completely sequenced DsMV isolates. Hawaii Strain I was most closely related to vanilla mosaic virus (VanMV) (KX505964.1), a strain of DsMV infecting vanilla in the southern Pacific Islands. Hawaii Strain II was most closely related to a taro DsMV isolate CTCRI-II-14 (KT026108.1) from India. Phylogenetic analysis of all available DsMV isolates based on amino acid sequences of their coat protein showed some correlation between host plant and genetic diversity. Analyses of DsMV genome sequences detected three recombinants from China and India among the six isolates with known complete genome sequences. The DsMV strain NC003537.1 from China is a recombinant of KJ786965.1 from India and Hawaii Strain II. Another DsMV strain KT026108.1 is a recombinant of Hawaii Strain II and NC003537.1 from China. The third DsMV strain KJ786965.1 from India is a recombinant of Hawaii Strain II and NC003537.1 from China. To our knowledge, this is the first report of recombination events in DsMV. Both Hawaii Strains I and II of DsMV were found widespread throughout the Hawaiian islands.


Assuntos
Colocasia , Potyvirus , Proteínas do Capsídeo/genética , Colocasia/virologia , Havaí , Filogenia , Potyvirus/classificação , Potyvirus/genética
12.
C R Biol ; 338(11): 757-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302834

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is a destructive disease of many economically important crop species. A significant variation in wilt incidence and severity in eggplant and potato was observed among the growing areas surveyed. R. solanacearum isolates obtained both from eggplant and potato belong to biovar III, while isolates from eggplant belong to race 1 and isolates obtained from potato belong to race 3. Random amplified polymorphic DNA (RAPD) technique was used as a tool for assessing genetic variation and relationship among seven isolate groups of R. solanacearum viz., RsB-1, RsB-2, RsB-3, RsP-1, RsP-2, RsP-3 and RsP-4, consisting in a total of 28 isolates. Out of the RAPD markers used, amplification with four decamer primers produced 70 bands with sizes ranging from 100 to 1400 bp. Out of 70 bands, 68 bands (97.06%) were polymorphic and two bands (2.94%) were monomorphic amongst the seven R. solanacearum isolates group. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei's genetic distance produced two main clusters of the seven isolates of R. solanacearum. The isolates RsB-1, RsB-2, RsB-3 and R-4 grouped in cluster І, while RsP-2, RsP-3 and RsP-4 grouped in cluster ІІ. The highest intra-variety similarity index (Si) was found in RsB-1 isolate (86.35%) and the lowest one in RsP-2 (56.59%). The results indicated that relatively higher and lower levels of genetic variation were found in RsP-3 and RsB-3, respectively. The coefficient of gene differentiation (G(st)) was 0.5487, reflecting the existence of a high level of genetic variations among seven isolates of R. solanacearum. Comparatively higher genetic distance (0.4293) and lower genetic identity (0.6510) were observed between RsB-2 and RsP-4 combinations. The lowest genetic distance (0.0357) and highest genetic identity (0.9650) were found in RsB-1 vs. RsB-2 pair. Thus, RAPD offers a potentially simple, rapid and reliable method to evaluate genetic diversity analysis in R. solanacearum.


Assuntos
Variação Genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/genética , Ralstonia solanacearum/isolamento & purificação , Ralstonia solanacearum/patogenicidade , Reprodutibilidade dos Testes , Solanum/microbiologia , Solanum melongena/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...