Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 53: 101281, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34175474

RESUMO

OBJECTIVE: The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. METHODS: Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). RESULTS: During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. CONCLUSIONS: The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed.


Assuntos
Deutério/química , Marcação por Isótopo , Adolescente , Adulto , Animais , Feminino , Glucose/metabolismo , Intolerância à Glucose , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Adulto Jovem
2.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016362

RESUMO

CONTEXT: Insulin resistance (IR) remains a global health challenge. Lipidomics offers an opportunity to identify biomarkers and better understand mechanisms of IR associated with abnormal lipid metabolism. OBJECTIVE: The objective of this article is to determine plasma lipid species associated with indices of IR and evaluate the lipidome response to an oral glucose tolerance test (OGTT). DESIGN AND SETTING: This study was community based and cross-sectional. PARTICIPANTS AND SAMPLE: Plasma samples (collected at 0 and 120 min during an OGTT) from nonobese, young adults age 18 to 34 years (n = 246) were analyzed using liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES: The associations between indices of IR and lipid classes and species (with a sex interaction term), or changes in lipid levels during an OGTT, were tested using linear models (adjusted for age, sex, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglycerides). RESULTS: Some (213) and (199) lipid species were associated with the homeostatic model assessment of insulin resistance and insulin area under curve (AUC), respectively. Alkylphosphatidylcholine (10), alkenylphosphatidylcholine (23), and alkylphosphatidylethanolamine (6) species were associated with insulin AUC in men only. Species of phosphatidylcholine (7) and sphingomyelin (5) were associated in women only. In response to an OGTT, a perturbation in the plasma lipidome, particularly in acylcarnitine species, was observed; and the changes in many lipid species were associated with insulin AUC. CONCLUSIONS: The plasma lipidome and changes in lipid levels during an OGTT were associated with indices of IR. These findings underlie the involvement of molecular lipid species in the pathogenesis of IR and possibly crosstalk between IR and sex-specific regulation of lipid metabolism.


Assuntos
Biomarcadores/sangue , Intolerância à Glucose/epidemiologia , Teste de Tolerância a Glucose/métodos , Resistência à Insulina , Lipidômica/métodos , Lipídeos/sangue , Obesidade/fisiopatologia , Adolescente , Adulto , Austrália/epidemiologia , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Intolerância à Glucose/sangue , Humanos , Masculino , Prognóstico , Adulto Jovem
3.
Diabetologia ; 62(12): 2310-2324, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31489455

RESUMO

AIMS/HYPOTHESIS: This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS: Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS: Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION: Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.


Assuntos
Aminoácidos/sangue , Hiperinsulinismo/metabolismo , Secreção de Insulina/fisiologia , Insulina/sangue , Adolescente , Adulto , Glicemia/metabolismo , Jejum/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Hiperinsulinismo/sangue , Resistência à Insulina/fisiologia , Lipídeos/sangue , Masculino , Adulto Jovem
4.
Mol Metab ; 27: 33-46, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285171

RESUMO

OBJECTIVE: Phosphatidylethanolamine (PtdEtn) is a major phospholipid in mammals. It is synthesized via two pathways, the CDP-ethanolamine pathway in the endoplasmic reticulum and the phosphatidylserine (PtdSer) decarboxylase (PSD) pathway in the mitochondria. While the CDP-ethanolamine pathway is considered the major route for PtdEtn synthesis in most mammalian tissues, little is known about the importance of the PSD pathway in vivo, especially in tissues enriched with mitochondria such as skeletal muscle. Therefore, we aimed to examine the role of the mitochondrial PSD pathway in regulating PtdEtn homeostasis in skeletal muscle in vivo. METHODS: To determine the functional significance of this pathway in skeletal muscle in vivo, an adeno-associated viral vector approach was employed to knockdown PSD expression in skeletal muscle of adult mice. Muscle lipid and metabolite profiling was performed using mass spectrometry. RESULTS: PSD knockdown disrupted muscle phospholipid homeostasis leading to an ∼25% reduction in PtdEtn and an ∼45% increase in PtdSer content. This was accompanied by the development of a severe myopathy, evident by a 40% loss in muscle mass as well as extensive myofiber damage as shown by increased DNA synthesis and central nucleation. In addition, PSD knockdown caused marked accumulation of abnormally appearing mitochondria that exhibited severely disrupted inner membrane integrity and reduced OXPHOS protein content. CONCLUSIONS: The PSD pathway has a significant role in maintaining phospholipid homeostasis in adult skeletal muscle. Moreover, PSD is essential for maintenance of mitochondrial integrity and skeletal muscle mass.


Assuntos
Carboxiliases/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Carboxiliases/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
5.
Diabetes ; 66(9): 2400-2406, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28684634

RESUMO

Insulin clamp studies have shown that the suppressive actions of insulin on endogenous glucose production (EGP) are markedly more sensitive than for stimulating glucose disposal (Rd). However, clamp conditions do not adequately mimic postprandial physiological responses. Here, using the variable infusion dual-tracer approach, we used a threefold range of ingested glucose doses (25, 50, and 75 g) to investigate how physiological changes in plasma insulin influence EGP in healthy subjects. Remarkably, the glucose responses were similar for all doses tested, yet there was a dose-dependent increase in insulin secretion and plasma insulin levels. Nonetheless, EGP was suppressed with the same rapidity and magnitude (∼55%) across all doses. The progressive hyperinsulinemia, however, caused a dose-dependent increase in the estimated rates of Rd, which likely accounts for the lack of a dose effect on plasma glucose excursions. This suggests that after glucose ingestion, the body preferentially permits a transient and optimal degree of postprandial hyperglycemia to efficiently enhance insulin-induced changes in glucose fluxes, thereby minimizing the demand for insulin secretion. This may represent an evolutionarily conserved mechanism that not only reduces the secretory burden on ß-cells but also avoids the potential negative consequences of excessive insulin release into the systemic arterial circulation.


Assuntos
Glicemia , Glucose/administração & dosagem , Glucose/metabolismo , Insulina/sangue , Adulto , Peptídeo C/sangue , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados/sangue , Glucagon/sangue , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Insulina/metabolismo , Masculino , Período Pós-Prandial
6.
Nutr J ; 16(1): 30, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526025

RESUMO

BACKGROUND: A cornerstone of conventional dietary advice is the recommendation to replace saturated fatty acids (SFA) with mostly n-6 polyunsaturated fatty acids (PUFA) to reduce the risk of coronary heart disease (CHD). Many clinical trials aimed to test this advice and have had their results pooled in several meta-analyses. However, earlier meta-analyses did not sufficiently account for major confounding variables that were present in some of those trials. Therefore, the aim of the study was to account for the major confounding variables in the diet heart trials, and emphasise the results from those trials that most accurately test the effect of replacing SFA with mostly n-6 PUFA. DESIGN: Clinical trials were identified from earlier meta-analyses. Relevant trials were categorised as 'adequately controlled' or 'inadequately controlled' depending on whether there were substantial dietary or non-dietary differences between the experimental and control groups that were not related to SFA or mostly n-6 PUFA intake, then were subject to different subgroup analyses. RESULTS: When pooling results from only the adequately controlled trials there was no effect for major CHD events (RR = 1.06, CI = 0.86-1.31), total CHD events (RR = 1.02, CI = 0.84-1.23), CHD mortality (RR = 1.13, CI = 0.91-1.40) and total mortality (RR = 1.07, CI = 0.90-1.26). Whereas, the pooled results from all trials, including the inadequately controlled trials, suggested that replacing SFA with mostly n-6 PUFA would significantly reduce the risk of total CHD events (RR = 0.80, CI = 0.65-0.98, P = 0.03), but not major CHD events (RR = 0.87, CI = 0.70-1.07), CHD mortality (RR = 0.90, CI = 0.70-1.17) and total mortality (RR = 1.00, CI = 0.90-1.10). CONCLUSION: Available evidence from adequately controlled randomised controlled trials suggest replacing SFA with mostly n-6 PUFA is unlikely to reduce CHD events, CHD mortality or total mortality. The suggestion of benefits reported in earlier meta-analyses is due to the inclusion of inadequately controlled trials. These findings have implications for current dietary recommendations.


Assuntos
Doença das Coronárias/epidemiologia , Dieta , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos/administração & dosagem , Colesterol/sangue , Doença das Coronárias/mortalidade , Gorduras na Dieta , Ácidos Graxos/sangue , Ácidos Graxos Ômega-6/sangue , Humanos , Estudos Observacionais como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco
7.
Sci Rep ; 6: 27541, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273128

RESUMO

In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Glicolipídeos/biossíntese , Lipogênese/efeitos dos fármacos , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Diglicerídeos/metabolismo , Ingestão de Energia , Ácidos Graxos/metabolismo , Intolerância à Glucose , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/patologia , Triglicerídeos/metabolismo , Aumento de Peso
8.
Biochem Biophys Res Commun ; 463(4): 818-24, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086096

RESUMO

RATIONALE: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. OBJECTIVE: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. METHODS AND RESULTS: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-(13)C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. CONCLUSIONS: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.


Assuntos
Dieta Hiperlipídica , Técnica Clamp de Glucose , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Metabolômica , Miocárdio/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Biochem Biophys Res Commun ; 462(1): 27-32, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25930998

RESUMO

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Metaboloma , Metabolômica/métodos , Músculo Esquelético/metabolismo , Animais , Ciclo do Ácido Cítrico , Cromatografia Gasosa-Espectrometria de Massas , Teste de Tolerância a Glucose , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fatores de Tempo
10.
Biochim Biophys Acta ; 1851(2): 210-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490466

RESUMO

Hepatic insulin resistance is a major risk factor for the development of type 2 diabetes and is associated with the accumulation of lipids, including diacylglycerol (DAG), triacylglycerols (TAG) and ceramide. There is evidence that enzymes involved in ceramide or sphingolipid metabolism may have a role in regulating concentrations of glycerolipids such as DAG and TAG. Here we have investigated the role of sphingosine kinase (SphK) in regulating hepatic lipid levels. We show that mice on a high-fat high-sucrose diet (HFHS) displayed glucose intolerance, elevated liver TAG and DAG, and a reduction in total hepatic SphK activity. Reduced SphK activity correlated with downregulation of SphK1, but not SphK2 expression, and was not associated with altered ceramide levels. The role of SphK1 was further investigated by overexpressing this isoform in the liver of mice in vivo. On a low-fat diet (LFD) mice overexpressing liver SphK1, displayed reduced hepatic TAG synthesis and total TAG levels, but with no change to DAG or ceramide. These mice also exhibited no change in gluconeogenesis, glycogenolysis or glucose tolerance. Similarly, overexpression of SphK1 had no effect on the pattern of endogenous glucose production determined during a glucose tolerance test. Under HFHS conditions, normalization of liver SphK activity to levels observed in LFD controls did not alter hepatic TAG concentrations. Furthermore, DAG, ceramide and glucose tolerance were also unaffected. In conclusion, our data suggest that SphK1 plays an important role in regulating TAG metabolism under LFD conditions.


Assuntos
Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Fígado/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Triglicerídeos/metabolismo , Animais , Ceramidas/metabolismo , Sacarose Alimentar/metabolismo , Glucose/metabolismo , Homeostase , Masculino , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/biossíntese , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...