Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(7): 1376-1385, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673576

RESUMO

Tobacco rattle virus (TRV) causes the economically important corky ring spot disease in potato. Chemical control is difficult due to the soilborne nature of the TRV-transmitting nematode vector, and identifying natural host resistance against TRV is considered to be the optimal control measure. The present study investigated the sensitivity of 63 cultivars representing all market types (evaluated at North Dakota and Washington over 2 years) for the incidence of TRV-induced tuber necrosis and severity. This article also investigates the cultivar-location interaction (using a mixed-effects model) for TRV-induced necrosis. TRV-induced tuber necrosis (P < 0.0001) and severity (P < 0.0001) were significantly different among cultivars evaluated separately in North Dakota and Washington trials. Mixed-effects model results of pooled data (North Dakota and Washington) demonstrated that the interaction of cultivar and location had a significant effect (P = 0.03) on TRV-induced necrosis. Based on the virus-induced tuber necrosis data from both years and locations, cultivars were categorized into sensitive, moderately sensitive, insensitive, and moderately insensitive groups. Based on data from North Dakota, 10 cultivars, including Bintje, Centennial Russet, Ciklamen, Gala, Lelah, Oneida Gold, POR06V12-3, Rio Colorado, Russian Banana, and Superior, were rated as insensitive to TRV-induced tuber necrosis. Similar trials assessing TRV sensitivity among cultivars conducted in Washington resulted in a number of differences in sensitivity rankings compared with North Dakota trials. A substantial shift in sensitivity of some potato cultivars to TRV-induced tuber necrosis was observed between the two locations. Four cultivars (Centennial Russet, Oneida Gold, Russian Banana, and Superior) ranked as insensitive for North Dakota trials were ranked as sensitive for Washington trials. These results can assist the potato industry in making cultivar choices to reduce the economic impact of TRV-induced tuber necrosis.


Assuntos
Doenças das Plantas/virologia , Tubérculos/virologia , Vírus de Plantas/fisiologia , Solanum tuberosum/virologia , Animais , Vetores de Doenças , Ecossistema , Geografia , Interações Hospedeiro-Patógeno , Necrose , Nematoides/virologia , North Dakota , Doenças das Plantas/parasitologia , Tubérculos/parasitologia , Solanum tuberosum/classificação , Solanum tuberosum/parasitologia , Especificidade da Espécie , Washington
2.
Plant Dis ; 100(8): 1586-1590, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30686232

RESUMO

The beet leafhopper, Circulifer tenellus, is an agriculturally important pest, particularly in the western United States. This insect transmits the Beet curly top virus (BCTV) to multiple crops, including bean, tomato, and pepper. In this study, we investigated the incidence of BCTV in individual leafhoppers collected at several sites in northeastern Oregon during the growing season in 2007, 2008, and 2009. Of the 800 insects tested, 151 (18.9%) were found positive for the virus. Percentage of virus incidence varied from 0% at one location in 2009 to a high of 55.6% for a location sampled in 2008. The complete virus genomes from one virus-positive insect collected in each of the 3 years were determined. BLAST analysis of the BCTV whole-genome sequences from 2007, 2008, and 2009 insects showed 98, 94, and 96% identities with the BCTV-Worland sequence (AY134867), respectively. The BCTV_2008 sequence showed the greatest identity (96%) with another BCTV genomic sequence (JN817383), and was found to be a recombinant between the BCTV-Worland type, representing the majority of the genome (approximately 2.2 kb), and the BCTV-CFH type that provided an approximately 0.8-kb fragment spanning replication-related genes C1 and C2. This area of the BCTV genome, between the C1 and C2 genes, was previously found to carry symptom determinants of the virus, and the data may suggest more severe effects of BCTV during the 2008 season. Results indicate that BCTV is common and widespread in C. tenellus in eastern Oregon and that there is substantial genetic diversity among the virus strains present in this important field and vegetable crop-growing region.

3.
BMC Genomics ; 16: 472, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26091899

RESUMO

BACKGROUND: Potato virus Y (PVY) is one of the most important plant viruses affecting potato production. The interactions between potato and PVY are complex and the outcome of the interactions depends on the potato genotype, the PVY strain, and the environmental conditions. A potato cultivar can induce resistance to a specific PVY strain, yet be susceptible to another. How a single potato cultivar responds to PVY in both compatible and incompatible interactions is not clear. RESULTS: In this study, we used RNA-sequencing (RNA-Seq) to investigate and compare the transcriptional changes in leaves of potato upon inoculation with PVY. We used two potato varieties: Premier Russet, which is resistant to the PVY strain O (PVY(O)) but susceptible to the strain NTN (PVY(NTN)), and Russet Burbank, which is susceptible to all PVY strains that have been tested. Leaves were inoculated with PVY(O) or PVY(NTN), and samples were collected 4 and 10 h post inoculation (hpi). A larger number of differentially expressed (DE) genes were found in the compatible reactions compared to the incompatible reaction. For all treatments, the majority of DE genes were down-regulated at 4 hpi and up-regulated at 10 hpi. Gene Ontology enrichment analysis showed enrichment of the biological process GO term "Photosynthesis, light harvesting" specifically in PVY(O)-inoculated Premier Russet leaves, while the GO term "nucleosome assembly" was largely overrepresented in PVY(NTN)-inoculated Premier Russet leaves and PVY(O)-inoculated Russet Burbank leaves but not in PVY(O)-inoculated Premier Russet leaves. Fewer genes were DE over 4-fold in the incompatible reaction compared to the compatible reactions. Amongst these, five genes were DE only in PVY(O)-inoculated Premier Russet leaves, and all five were down-regulated. These genes are predicted to encode for a putative ABC transporter, a MYC2 transcription factor, a VQ-motif containing protein, a non-specific lipid-transfer protein, and a xyloglucan endotransglucosylase-hydroxylase. CONCLUSIONS: Our results show that the incompatible and compatible reactions in Premier Russet shared more similarities, in particular during the initial response, than the compatible reactions in the two different hosts. Our results identify potential key processes and genes that determine the fate of the reaction, compatible or incompatible, between PVY and its host.


Assuntos
Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Potyvirus/patogenicidade , RNA/genética , Solanum tuberosum/genética , Solanum tuberosum/virologia , Regulação para Baixo/genética , Genoma Viral/genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/virologia , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...