Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 211: 106740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301376

RESUMO

Bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD+) can reduce plant ethylene levels and increase root development and elongation resulting in increased resiliency to drought and other plant stressors. Although these bacteria are ubiquitous in the soil, non-culture-based methods for their enumeration and identification are not well developed. In this study we compare two culture-independent approaches for identifying ACCD+ bacteria. First, quantitative PCR (qPCR) and direct acdS sequencing with newly designed gene-specific primers; and second, phylogenetic construction of 16S rRNA amplicon libraries with the PICRUSt2 tool. Using soils from eastern Colorado, we showed complementary yet differing results in ACCD+ abundance and community structure responding to water availability. Across all sites, gene abundances estimated from qPCR with the acdS gene-specific primers and phylogenetic reconstruction using PICRUSt2 were significantly correlated. However, PICRUSt2 identified members of the Acidobacteria, Proteobacteria, and Bacteroidetes phyla (now known as Acidobacteriota, Pseudomonadota, and Bacteroidota according to the International Code of Nomenclature of Prokaryotes) as ACCD+ bacteria, whereas the acdS primers amplified only members of the Proteobacteria phyla. Despite these differences, both measures showed that bacterial abundance of ACCD+ decreased as soil water content decreased along a potential evapotranspiration (PET) gradient at three sites in eastern Colorado. One major advantage of using 16S sequencing and PICRUSt2 in metagenomic studies is the ability to get a potential functional profile of all known KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes within the bacterial community of a single soil sample. The 16S-PICRUSt2 method paints a broader picture of the biological and biochemical function of the soil microbiome compared to direct acdS sequencing; however, phylogenetic analysis based on 16S gene relatedness may not reflect that of the functional gene of interest.


Assuntos
Bactérias , Carbono-Carbono Liases , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Carbono-Carbono Liases/genética , Água , Microbiologia do Solo
2.
Nutrients ; 11(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817899

RESUMO

Estrogen decline during menopause is associated with altered metabolism, weight gain and increased risk of cardiometabolic diseases. The gut microbiota also plays a role in the development of cardiometabolic dysfunction and is also subject to changes associated with age-related hormone changes. Phytoestrogens are plant-based estrogen mimics that have gained popularity as dietary supplements for the treatment or prevention of menopause-related symptoms. These compounds have the potential to both modulate and be metabolized by the gut microbiota. Hops (Humulus lupulus L.) contain potent phytoestrogen precursors, which rely on microbial biotransformation in the gut to estrogenic forms. We supplemented ovariectomized (OVX) or sham-operated (SHAM) C57BL/6 mice, with oral estradiol (E2), a flavonoid-rich extract from hops, or a placebo carrier oil, to observe effects on adiposity, inflammation, and gut bacteria composition. Hops extract (HE) and E2 protected against increased visceral adiposity and liver triglyceride accumulation in OVX animals. Surprisingly, we found no evidence of OVX having a significant impact on the overall gut bacterial community structure. We did find differences in the abundance of Akkermansia muciniphila, which was lower with HE treatment in the SHAM group relative to OVX E2 treatment and to placebo in the SHAM group.


Assuntos
Estrogênios/farmacologia , Flavonoides/farmacologia , Microbioma Gastrointestinal , Humulus/química , Extratos Vegetais/farmacologia , Adiposidade/efeitos dos fármacos , Akkermansia , Animais , Suplementos Nutricionais/microbiologia , Estradiol/farmacologia , Feminino , Flavanonas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ovariectomia , Fitoestrógenos/farmacologia , Triglicerídeos/metabolismo , Verrucomicrobia/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
3.
Ann Transl Med ; 3(13): 175, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26366392
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...