Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 20(21): 6051-60, 1981 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-6118173

RESUMO

Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.


Assuntos
Fosfatos/farmacologia , Pirofosfatases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cátions Bivalentes , Pirofosfatase Inorgânica , Cinética , Matemática , Ligação Proteica , Relação Estrutura-Atividade
2.
Biochemistry ; 17(19): 4033-40, 1978 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-361074

RESUMO

Yeast inorganic pyrophosphatase is a dimer of identical subunits. Previous work (Rapoport, T.A., et al. (1973) Eur. J. Biochem. 33, 341) indicated the presence of two different Mn2+ binding sites per subunit. In the present work, the binding of inorganic phosphate to the Mn2+-inorganic pyrophosphatase complex has been studied by 1H and 31P nuclear magnetic resonance. Two distinct phosphate sites have been found, having dissociation constants of 0.24 mM and 18 mM. The Mn2+-31P distance from tightly bound Mn2+ to phosphate bound in the low affinity site (6.2 A) is consistent with outer sphere binding. Binding to both phosphate sites can be simultaneously inhibited by the pyrophosphate analogue, hydroxymethanebisphosphonate, providing evidence for the physical proximity of these two sites. The weaker Mn2+ site is apparently far from both phosphate sites. From the magnitudes of the dissociation constants found for both phosphate and analogue binding and the recent work of P.D. Boyer and his co-workers (private communication) on enzyme-catalyzed phosphate-water exchange, it appears unlikely that the hydrolysis of enzyme-bound pyrophosphate is the rate-determining step in the overall enzymatic catalysis of pyrophosphate hydrolysis, at least when Mn2+ is the required divalent metal ion cofactor.


Assuntos
Fosfatos , Pirofosfatases , Saccharomyces cerevisiae/enzimologia , Cinética , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Manganês , Matemática , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...