Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1175, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608546

RESUMO

Interference patterns provide direct measurement of coherent propagation of matter waves in quantum systems. Superfluidity in Bose-Einstein condensates of excitons can enable long-range ballistic exciton propagation and can lead to emerging long-scale interference patterns. Indirect excitons (IXs) are formed by electrons and holes in separated layers. The theory predicts that the reduced IX recombination enables IX superfluid propagation over macroscopic distances. Here, we present dislocation-like phase singularities in interference patterns produced by condensate of IXs. We analyze how exciton vortices and skyrmions should appear in the interference experiments and show that the observed interference dislocations are not associated with these phase defects. We show that the observed interference dislocations originate from the moiré effect in combined interference patterns of propagating condensate matter waves. The interference dislocations are formed by the IX matter waves ballistically propagating over macroscopic distances. The long-range ballistic IX propagation is the evidence for IX condensate superfluidity.

2.
Nat Commun ; 9(1): 2158, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867086

RESUMO

The Pancharatnam-Berry phase is a geometric phase acquired over a cycle of parameters in the Hamiltonian governing the evolution of the system. Here, we report on the observation of the Pancharatnam-Berry phase in a condensate of indirect excitons (IXs) in a GaAs-coupled quantum well structure. The Pancharatnam-Berry phase is directly measured by detecting phase shifts of interference fringes in IX interference patterns. Correlations are found between the phase shifts, polarization pattern of IX emission, and onset of IX spontaneous coherence. The evolving Pancharatnam-Berry phase is acquired due to coherent spin precession in IX condensate and is observed with no decay over lengths exceeding 10 µm indicating long-range coherent spin transport.

3.
Phys Rev Lett ; 110(24): 246403, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165944

RESUMO

We report the observation of spin currents in a coherent gas of indirect excitons. The realized long-range spin currents originate from the formation of a coherent gas of bosonic pairs--a new mechanism to suppress the spin relaxation. The spin currents result in the appearance of a variety of polarization patterns, including helical patterns, four-leaf patterns, spiral patterns, bell patterns, and periodic patterns. We demonstrate control of the spin currents by a magnetic field. We also present a theory of coherent exciton spin transport that describes the observed exciton polarization patterns and indicates the trajectories of the spin currents.

4.
Nature ; 483(7391): 584-8, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22437498

RESUMO

If bosonic particles are cooled down below the temperature of quantum degeneracy, they can spontaneously form a coherent state in which individual matter waves synchronize and combine. Spontaneous coherence of matter waves forms the basis of a number of fundamental phenomena in physics, including superconductivity, superfluidity and Bose-Einstein condensation. Spontaneous coherence is the key characteristic of condensation in momentum space. Excitons--bound pairs of electrons and holes--form a model system to explore the quantum physics of cold bosons in solids. Cold exciton gases can be realized in a system of indirect excitons, which can cool down below the temperature of quantum degeneracy owing to their long lifetimes. Here we report measurements of spontaneous coherence in a gas of indirect excitons. We found that spontaneous coherence of excitons emerges in the region of the macroscopically ordered exciton state and in the region of vortices of linear polarization. The coherence length in these regions is much larger than in a classical gas, indicating a coherent state with a much narrower than classical exciton distribution in momentum space, characteristic of a condensate. A pattern of extended spontaneous coherence is correlated with a pattern of spontaneous polarization, revealing the properties of a multicomponent coherent state. We also observed phase singularities in the coherent exciton gas. All these phenomena emerge when the exciton gas is cooled below a few kelvin.

5.
Phys Rev Lett ; 106(19): 196806, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668190

RESUMO

We report on the study of indirect excitons in moving lattices-conveyers created by a set of ac voltages applied to the electrodes on the sample surface. The wavelength of this moving lattice is set by the electrode periodicity, the amplitude is controlled by the applied voltage, and the velocity is controlled by the ac frequency. We found the dynamical localization-delocalization transition for excitons in the conveyers and determined its dependence on exciton density and conveyer amplitude and velocity.

6.
Opt Lett ; 35(10): 1587-9, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20479817

RESUMO

We demonstrate experimental proof of principle for all-optical excitonic transistors where light controls light by using excitons as an intermediate medium. The principle of operation of all-optical excitonic transistors is based on the control of exciton fluxes by light.

7.
Phys Rev Lett ; 103(8): 087403, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792761

RESUMO

We report on the principle and realization of a new trap for excitons--the diamond electrostatic trap--which uses a single electrode to create a confining potential for excitons. We also create elevated diamond traps which permit evaporative cooling of the exciton gas. We observe the collection of excitons towards the trap center with increasing exciton density. This effect is due to screening of disorder in the trap by the excitons. As a result, the diamond trap behaves as a smooth parabolic potential which realizes a cold and dense exciton gas at the trap center.

8.
Phys Rev Lett ; 102(18): 186803, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19518898

RESUMO

We study transport of indirect excitons in GaAs/AlGaAs coupled quantum wells in linear lattices created by laterally modulated gate voltage. The localization-delocalization transition for transport across the lattice was observed with reducing lattice amplitude or increasing exciton density. The exciton interaction energy at the transition is close to the lattice amplitude. These results are consistent with the model, which attributes the localization-delocalization transition to the interaction-induced percolation of the exciton gas through the external potential. We also discuss applications of the lattice potentials for estimating the strength of disorder and exciton interaction.

9.
Nano Lett ; 9(5): 2094-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19382780

RESUMO

We report on the study of indirect excitons in elevated traps. The transition from a normal to elevated trap results in the appearance of narrow lines in the emission spectrum. The density, temperature, and voltage dependences indicate that these lines correspond to the emission of individual states of indirect excitons in a disorder potential in the elevated trap.

10.
Opt Lett ; 32(17): 2466-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17767273

RESUMO

We demonstrate experimental proof of principle for an optoelectronic transistor based on the modulation of exciton flux via gate voltage. The exciton optoelectronic transistor (EXOT) implements electronic operation on photons by using excitons as intermediate media; the intensity of light emitted at the optical output is proportional to the intensity of light at the optical input and is controlled electronically by the gate. We demonstrate a contrast ratio of 30 between an on state and an off state of the EXOT and its operation at speeds greater than 1 GHz. Our studies also demonstrate high-speed control of both the flux and the potential energy of excitons on a time scale much shorter than the exciton lifetime.

11.
Phys Rev Lett ; 97(18): 187402, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17155574

RESUMO

A Mach-Zehnder interferometer with spatial and spectral resolution was used to probe spontaneous coherence in cold exciton gases, which are implemented experimentally in the ring of indirect excitons in coupled quantum wells. A strong enhancement of the exciton coherence length is observed at temperatures below a few Kelvin. The increase of the coherence length is correlated with the macroscopic spatial ordering of excitons. The coherence length at the lowest temperature corresponds to a very narrow spread of the exciton momentum distribution, much smaller than that for a classical exciton gas.

12.
Phys Rev Lett ; 96(22): 227402, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16803343

RESUMO

Optical trapping and manipulation of neutral particles has led to a variety of experiments from stretching DNA-molecules to trapping and cooling of neutral atoms. An exciting recent outgrowth of the technique is an experimental implementation of atom Bose-Einstein condensation. In this Letter, we propose and demonstrate laser-induced trapping for a new system--a gas of excitons in quantum well structures. We report on the trapping of a highly degenerate Bose gas of excitons in laser-induced traps.


Assuntos
Biofísica/métodos , Lasers , Modelos Químicos , Teoria Quântica , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...