Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 883858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600292

RESUMO

We have just started to understand the mechanisms underlying flexibility of motor programs among segmental neural networks that control each individual leg during walking in vertebrates and invertebrates. Here, we investigated the mechanisms underlying curve walking in the stick insect Carausius morosus during optomotor-induced turning. We wanted to know, whether the previously reported body-side specific changes in a two-front leg turning animal are also observed in the other thoracic leg segments. The motor activity of the three major leg joints showed three types of responses: 1) a context-dependent increase or decrease in motor neuron (MN) activity of the antagonistic MN pools of the thorax-coxa (ThC)-joint during inside and outside turns; 2) an activation of 1 MN pool with simultaneous cessation of the other, independent of the turning direction in the coxa-trochanteral (CTr)-joint; 3) a modification in the activity of both FTi-joint MN pools which depended on the turning direction in one, but not in the other thorax segment. By pharmacological activation of the meso- or metathoracic central pattern generating networks (CPG), we show that turning-related modifications in motor output involve changes to local CPG activity. The rhythmic activity in the MN pools of the ThC and CTr-joints was modified similarly to what was observed under control conditions in saline. Our results indicate that changes in meso- and metathoracic motor activity during curve walking are leg-joint- and thorax-segment-specific, can depend on the turning direction, and are mediated through changes in local CPG activity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28597315

RESUMO

Previous studies have demonstrated that myofibrillar ATPase (mATPase) enzyme activity in muscle fibers determines their contraction properties. We analyzed mATPase activities in muscles of the front, middle and hind legs of the orthopteran stick insect (Carausius morosus) to test the hypothesis that differences in muscle fiber types and distributions reflected differences in their behavioral functions. Our data show that all muscles are composed of at least three fiber types, fast, intermediate and slow, and demonstrate that: (1) in the femoral muscles (extensor and flexor tibiae) of all legs, the number of fast fibers decreases from proximal to distal, with a concomitant increase in the number of slow fibers. (2) The swing phase muscles protractor coxae and levator trochanteris, have smaller percentages of slow fibers compared to the antagonist stance muscles retractor coxae and depressor trochanteris. (3) The percentage of slow fibers in the retractor coxae and depressor trochanteris increases significantly from front to hind legs. These results suggest that fiber-type distribution in leg muscles of insects is not identical across leg muscles but tuned towards the specific function of a given muscle in the locomotor system.


Assuntos
Membro Posterior/inervação , Membro Posterior/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/anatomia & histologia , Caminhada/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Fenômenos Biomecânicos , Feminino , Insetos/fisiologia , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...