Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(49): 18557-18570, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619519

RESUMO

The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Antibacterianos/química , Colesterol/análogos & derivados , Colesterol/química , Escherichia coli/metabolismo , Glicerofosfolipídeos/química , Lipossomos/química , Espectroscopia de Ressonância Magnética , Técnicas de Patch-Clamp , Fosfatidilcolinas/química , Fosfatidilgliceróis/química
2.
J Am Chem Soc ; 141(25): 9837-9853, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31144503

RESUMO

Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Histidina/química , Bicamadas Lipídicas/metabolismo , Tensoativos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Tensoativos/química
3.
J Phys Chem B ; 119(49): 15235-46, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26569483

RESUMO

Piscidins were the first antimicrobial peptides discovered in the mast cells of vertebrates. While two family members, piscidin 1 (p1) and piscidin 3 (p3), have highly similar sequences and α-helical structures when bound to model membranes, p1 generally exhibits stronger antimicrobial and hemolytic activity than p3 for reasons that remain elusive. In this study, we combine activity assays and biophysical methods to investigate the mechanisms underlying the cellular function and differing biological potencies of these peptides, and report findings spanning three major facets. First, added to Gram-positive (Bacillus megaterium) and Gram-negative (Escherichia coli) bacteria at sublethal concentrations and imaged by confocal microscopy, both p1 and p3 translocate across cell membranes and colocalize with nucleoids. In E. coli, translocation is accompanied by nonlethal permeabilization that features more pronounced leakage for p1. Second, p1 is also more disruptive than p3 to bacterial model membranes, as quantified by a dye-leakage assay and (2)H solid-state NMR-monitored lipid acyl chain order parameters. Oriented CD studies in the same bilayers show that, beyond a critical peptide concentration, both peptides transition from a surface-bound state to a tilted orientation. Third, gel retardation experiments and CD-monitored titrations on isolated DNA demonstrate that both peptides bind DNA but p3 has stronger condensing effects. Notably, solid-state NMR reveals that the peptides are α-helical when bound to DNA. Overall, these studies identify two polyreactive piscidin isoforms that bind phosphate-containing targets in a poised amphipathic α-helical conformation, disrupt bacterial membranes, and access the intracellular constituents of target cells. Remarkably, the two isoforms have complementary effects; p1 is more membrane active, while p3 has stronger DNA-condensing effects. Subtle differences in their physicochemical properties are highlighted to help explain their contrasting activities.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , DNA/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Membranas Artificiais , Peptídeos Catiônicos Antimicrobianos/química , Biofísica , Proteínas de Peixes/química , Espectroscopia de Ressonância Magnética , Conformação Proteica
4.
Antimicrob Agents Chemother ; 49(12): 4957-64, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16304158

RESUMO

Many naturally occurring antimicrobial peptides comprise cationic linear sequences with the potential to adopt an amphipathic alpha-helical conformation. We designed a linear 18-residue peptide that adopted an amphipathic beta-sheet structure when it was bound to lipids. In comparison to a 21-residue amphipathic alpha-helical peptide of equal charge and hydrophobicity, this peptide possessed more similar antimicrobial activity and greater selectivity in binding to and inducing leakage in vesicles composed of bacterial membrane lipids than vesicles composed of mammalian membrane lipids (J. Blazyk, R. Weigand, J. Klein, J. Hammer, R. M. Epand, R. F. Epand, W. L. Maloy, and U. P. Kari, J. Biol. Chem. 276:27899-27906, 2001). Here, we compare two systematically designed families of linear cationic peptides to evaluate the importance of amphipathicity for determination of antimicrobial activity. Each peptide contains six lysine residues and is amidated at the carboxyl terminus. The first family consists of five peptides with various capacities to form amphipathic beta-sheet structures. The second family consists of six peptides with various potentials to form amphipathic alpha helices. Only those peptides that can form a highly amphipathic structure (either a beta sheet or an alpha helix) possessed significant antimicrobial activities. Striking differences in the abilities to bind to and induce leakage in membranes and lipid vesicles were observed for the two families. Overall, the amphipathic beta-sheet peptides are less lytic than their amphipathic alpha-helical counterparts, particularly toward membranes containing phosphatidylcholine, a lipid commonly found in mammalian plasma membranes. Thus, it appears that antimicrobial peptides that can form an amphipathic beta-sheet conformation may offer a selective advantage in targeting bacterial cells.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Conformação Proteica , Estrutura Secundária de Proteína
5.
Biochemistry ; 42(31): 9395-405, 2003 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12899626

RESUMO

We recently demonstrated that a linear 18-residue peptide, (KIGAKI)(3)-NH(2), designed to form amphipathic beta-sheet structure when bound to lipid bilayers, possessed potent antimicrobial activity and low hemolytic activity. The ability of (KIGAKI)(3)-NH(2) to induce leakage from lipid vesicles was compared to that of the amphipathic alpha-helical peptide, (KIAGKIA)(3)-NH(2), which had equivalent antimicrobial activity. Significantly, the lytic properties of (KIGAKI)(3)-NH(2) were enhanced for mixed acidic-neutral lipid vesicles containing phosphatidylethanolamine instead of phosphatidylcholine as the neutral component, while the potency of (KIAGKIA)(3)-NH(2) was significantly reduced [Blazyk, J., et al. (2001) J. Biol. Chem. 276, 27899-27906]. In this paper, we measured the lytic properties of these peptides, as well as several fluorescent analogues containing a single tryptophan residue, by monitoring permeability changes in large unilamellar vesicles with varying lipid compositions and in Escherichia coli cells. The binding of these peptides to lipid bilayers with defined compositions was compared using surface plasmon resonance, circular dichroism, and fluorescence spectroscopy. Surprisingly large differences were observed in membrane binding properties, particularly in the case of KIGAKIKWGAKIKIGAKI-NH(2). Since all of these peptides possess the same charge and very similar mean hydrophobicities, the binding data cannot be explained merely in terms of electrostatic and/or hydrophobic interactions. In light of their equivalent antimicrobial and hemolytic potencies, some of these peptides may employ mechanisms beyond simply increasing plasma membrane permeability to exert their lethal effects.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Triptofano/química , Sequência de Aminoácidos , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Dicroísmo Circular , Eritrócitos/metabolismo , Fluoresceínas/metabolismo , Hemólise , Humanos , Dados de Sequência Molecular , Nitrofenilgalactosídeos/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...