Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208534

RESUMO

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Assuntos
Carboidratos/química , Carbono/química , Biologia Computacional , Hidrogênio/química , Proteínas/química , Ligação de Hidrogênio , Técnicas In Vitro , Ligação Proteica , Termodinâmica
2.
Ticks Tick Borne Dis ; 11(2): 101348, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812591

RESUMO

DNA methylation at the fifth position of cytosine (5mC) and at the sixth position of adenine (6 mA) plays an important role in the regulation of the gene expression and, in eukaryotes, is essential for normal development. For Ixodes ricinus, the most common European arthropod vector of human and animal pathogens, the DNA methylation profile and the role of DNA methylation in tick development are still under discussion. Our goal was to analyze the status of I. ricinus DNA methylation at different life stages and identify enzymes that produce this type of DNA modification. We found that 5mC and 6mA are present in I. ricinus genomic DNA at all life stages. In the transcriptome of I. ricinus, we identified the sequences of the putative IrDNMT1, IrDNMT3, and IrDAMT enzymes, and bioinformatic analysis and three-dimensional modeling predicted their DNA methylation activity. This confirms that I. ricinus possesses a complete DNA methylation toolkit. Our results suggest that DNA methylation is important for the physiology and transstadial development of ticks.


Assuntos
Proteínas de Artrópodes/genética , Epigênese Genética , Regulação da Expressão Gênica , Ixodes/genética , Metiltransferases/genética , Transcriptoma , Fatores Etários , Animais , Proteínas de Artrópodes/química , Feminino , Ixodes/enzimologia , Ixodes/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Metiltransferases/química , Conformação Molecular , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Transcrição Gênica
3.
Nucleic Acids Res ; 47(D1): D550-D558, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357405

RESUMO

The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated, encyclopaedic database that collates and summarizes information on stable, macromolecular complexes of known function. It captures complex composition, topology and function and links out to a large range of domain-specific resources that hold more detailed data, such as PDB or Reactome. We have made several significant improvements since our last update, including improving compliance to the FAIR data principles by providing complex-specific, stable identifiers that include versioning. Protein complexes are now available from 20 species for download in standards-compliant formats such as PSI-XML, MI-JSON and ComplexTAB or can be accessed via an improved REST API. A component-based JS front-end framework has been implemented to drive a new website and this has allowed the use of APIs from linked services to import and visualize information such as the 3D structure of protein complexes, its role in reactions and pathways and the co-expression of complex components in the tissues of multi-cellular organisms. A first draft of the complete complexome of Saccharomyces cerevisiae is now available to browse and download.


Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos/química , Animais , Gráficos por Computador , Humanos , Substâncias Macromoleculares/química , Camundongos , Complexos Multiproteicos/metabolismo , Ácidos Nucleicos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...