Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1211064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600768

RESUMO

Background: Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter data sets that can be difficult to interpret conventionally. While currently available clinical data can be used in ML for this purpose, there exists the potential to discover new "biomarkers" that will enhance the effectiveness of ML in clinical decision making. Since the interaction of the immune system and cancer is a hallmark of tumor establishment and progression, one potential area for cancer biomarker discovery is through the investigation of cancer-related immune cell signatures. Hence, we hypothesize that blood immune cell signatures can act as a biomarker for cancer progression. Methods: To probe this, we have developed and tested a multiparameter cell-surface marker screening pipeline, using flow cytometry to obtain high-resolution systemic leukocyte population profiles that correlate with detection and characterization of several cancers in murine syngeneic tumor models. Results: We discovered a signature of several blood leukocyte subsets, the most notable of which were monocyte subsets, that could be used to train CATboost ML models to predict the presence and type of cancer present in the animals. Conclusions: Our findings highlight the potential utility of a screening approach to identify robust leukocyte biomarkers for cancer detection and characterization. This pipeline can easily be adapted to screen for cancer specific leukocyte markers from the blood of cancer patient.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Animais , Camundongos , Citometria de Fluxo , Neoplasias/diagnóstico , Leucócitos , Aprendizado de Máquina
2.
PLoS One ; 17(2): e0264631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35226704

RESUMO

Clinical adoption of immune checkpoint inhibitors in cancer management has highlighted the interconnection between carcinogenesis and the immune system. Immune cells are integral to the tumour microenvironment and can influence the outcome of therapies. Better understanding of an individual's immune landscape may play an important role in treatment personalisation. Peripheral blood is a readily accessible source of information to study an individual's immune landscape compared to more complex and invasive tumour bioipsies, and may hold immense diagnostic and prognostic potential. Identifying the critical components of these immune signatures in peripheral blood presents an attractive alternative to tumour biopsy-based immune phenotyping strategies. We used two syngeneic solid tumour models, a 4T1 breast cancer model and a CT26 colorectal cancer model, in a longitudinal study of the peripheral blood immune landscape. Our strategy combined two highly accessible approaches, blood leukocyte immune phenotyping and plasma soluble immune factor characterisation, to identify distinguishing immune signatures of the CT26 and 4T1 tumour models using machine learning. Myeloid cells, specifically neutrophils and PD-L1-expressing myeloid cells, were found to correlate with tumour size in both the models. Elevated levels of G-CSF, IL-6 and CXCL13, and B cell counts were associated with 4T1 growth, whereas CCL17, CXCL10, total myeloid cells, CCL2, IL-10, CXCL1, and Ly6Cintermediate monocytes were associated with CT26 tumour development. Peripheral blood appears to be an accessible means to interrogate tumour-dependent changes to the host immune landscape, and to identify blood immune phenotypes for future treatment stratification.


Assuntos
Antígeno B7-H1
3.
Nat Commun ; 11(1): 6408, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328478

RESUMO

Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9-1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Histonas/metabolismo , Polímeros/farmacologia , Sepse/sangue , Sepse/tratamento farmacológico , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Feminino , Histonas/toxicidade , Humanos , Bicamadas Lipídicas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/sangue , Ativação Plaquetária/efeitos dos fármacos , Polieletrólitos , Polímeros/química , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...