Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 10: 52, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25889824

RESUMO

BACKGROUND: Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. METHODS: Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. RESULTS: The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. CONCLUSIONS: Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.


Assuntos
Neoplasias Encefálicas/radioterapia , Proliferação de Células/efeitos da radiação , Glioma/radioterapia , Lipossomos , Terapia por Captura de Nêutron , Nêutrons , Neoplasias Encefálicas/patologia , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Glioma/patologia , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Células Tumorais Cultivadas
2.
ChemMedChem ; 10(1): 164-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25338544

RESUMO

Peptidic ligands selectively targeting distinct G protein-coupled receptors that are highly expressed in tumor tissue represent a promising approach in drug delivery. Receptor-preferring analogues of neuropeptide Y (NPY) bind and activate the human Y1 receptor subtype (hY1 receptor), which is found in 90% of breast cancer tissue and in all breast-cancer-derived metastases. Herein, novel highly boron-loaded Y1 -receptor-preferring peptide analogues are described as smart shuttle systems for carbaboranes as (10) B-containing moieties. Various positions in the peptide were screened for their susceptibility to carbaborane modification, and the most promising positions were chosen to create a multi-carbaborane peptide containing 30 boron atoms per peptide with excellent activation and internalization patterns at the hY1 receptor. Boron uptake studies by inductively coupled plasma mass spectrometry revealed successful uptake of the multi-carbaborane peptide into hY1 -receptor-expressing cells, exceeding the required amount of 10(9) boron atoms per cell. This result demonstrates that the NPY/hY receptor system can act as an effective transport system for boron-containing moieties.


Assuntos
Boranos/química , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Animais , Boranos/síntese química , Terapia por Captura de Nêutron de Boro , Neoplasias da Mama/radioterapia , Células COS , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Dados de Sequência Molecular , Neuropeptídeo Y/análogos & derivados , Receptores de Neuropeptídeo Y/genética
3.
Anal Bioanal Chem ; 407(9): 2365-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25015045

RESUMO

An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 µm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.


Assuntos
Compostos de Boro/química , Boro/química , Frutose/análogos & derivados , Isótopos/química , Neoplasias Hepáticas/radioterapia , Fígado/química , Compostos Radiofarmacêuticos/química , Terapia por Captura de Nêutron de Boro , Frutose/química , Humanos , Fígado/efeitos da radiação , Neoplasias Hepáticas/química , Imagem Molecular
4.
Med Phys ; 41(11): 111706, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370620

RESUMO

PURPOSE: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. METHODS: The depletion calculation code origen2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a mcnp5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established attila model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. RESULTS: The mcnp5 simulated neutron spectrum and source strength are found to be in good agreement with the previous attila model whereas the photon production is much lower. Both mcnp5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. CONCLUSIONS: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the mcnp5 simulations and experiments demonstrates that the attila model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural modifications in the thermal column irradiation channel or the use of different irradiation sites than the thermal column, e.g., the beam tubes.


Assuntos
Radiometria/métodos , Alanina/química , Algoritmos , Terapia por Captura de Nêutron de Boro/instrumentação , Simulação por Computador , Alemanha , Humanos , Método de Monte Carlo , Nêutrons/uso terapêutico , Reatores Nucleares , Imagens de Fantasmas , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes
5.
Acta Oncol ; 50(6): 817-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21767179

RESUMO

UNLABELLED: Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and may be suitable for measurements in mixed neutron and gamma fields. MATERIAL AND METHODS: Two experiments have been carried out in the thermal column of the TRIGA Mark II reactor at the University of Mainz. Alanine dosimeters have been irradiated in a phantom and in liver tissue. RESULTS: For the interpretation and prediction of the dose for each pellet, beside the results of the measurements, calculations with the Monte Carlo code FLUKA are presented here. For the phantom, as well as for the liver tissue, the measured and calculated dose and flux values are in good agreement. DISCUSSION: Alanine dosimeters, in combination with flux measurements and Monte Carlo calculations with FLUKA, suggest that it is possible to establish a system for monitoring the dose in a mixed neutron and gamma field for BNCT and other applications in radiotherapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Raios gama , Neoplasias Hepáticas/radioterapia , Fígado/efeitos da radiação , Nêutrons , Imagens de Fantasmas , Alanina , Relação Dose-Resposta à Radiação , Humanos , Método de Monte Carlo , Monitoramento de Radiação , Radiometria
6.
Int J Food Microbiol ; 145(1): 126-31, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21195499

RESUMO

Must and wine may be contaminated with elevated copper concentrations by the use of fungicides or in course of the vinification process. Hitherto only a few practicable and harmless procedures exist to reduce an excess of copper from must and wine. For this reason we investigated the biosorption of copper by eight wine-relevant Lactobacillus species. Both, living and heat-inactivated cells revealed a significant degree of Cu adsorption. It was shown that Cu binding correlated positively with an increasing pH value of the environment. The highest binding capacity of the tested lactic acid bacteria was found for L. buchneri DSM 20057 with a maximum of 46.17 µg Cu bound per mg cell in deionized water. In must, wine and grape juice Cu was removed less effective which is not solely attributed to low pH-values, but also to specific medium parameters such as intrinsic metal cations, organic acids or phenolic compounds. Nevertheless, about 0.5-1.0 µg Cu per ml could be removed from wine samples, which is sufficient enough to lower critical copper concentrations.


Assuntos
Cobre/isolamento & purificação , Microbiologia de Alimentos , Lactobacillus/metabolismo , Vinho/microbiologia , Adsorção , Meios de Cultura , Temperatura Alta , Concentração de Íons de Hidrogênio , Vitis/química
7.
Acta Oncol ; 49(7): 1165-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831509

RESUMO

To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also speculate on sensitizing alanine to thermal neutrons by adding boron compounds.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Raios gama/uso terapêutico , Nêutrons/uso terapêutico , Reatores Nucleares , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia por Captura de Nêutron de Boro/instrumentação , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Alemanha , Células Hep G2 , Hospitais Universitários , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Modelos Biológicos , Reatores Nucleares/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Estudos de Validação como Assunto
8.
Appl Radiat Isot ; 67(12): 2128-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19535257

RESUMO

Brick stones collected from different production facilities were studied for their elemental compositions under forensic aspects using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). The aim of these examinations was to assess the potential of these methods in forensic comparison analyses of brick stones. The accuracy of the analysis methods was evaluated using NIST standard reference materials (679, 98b and 97b). In order to compare the stones to each other, multivariate data analysis was used. The evaluation of the INAA results (based on the concentrations of V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs) using principal component analysis (PCA) and cluster analysis is presented as an example. The results derived from the different analytical methods are consistent. It was shown that elemental analysis using the described methods is a valuable tool for forensic examinations of brick stones.

9.
Appl Radiat Isot ; 67(12): 2113-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19539485

RESUMO

Samples from 20 reverse paintings on glass from different regions have been analyzed by NAA with the aim to deduce the place and date of their origin. A separation of earlier and later paintings was due to different concentrations of K and Na, because a sodium-containing flux came into use after 1870. Since in southern Germany quartz sand, and in the eastern area quartz rock had been used for glass manufacture, specific impurities could be used to distinguish southern from eastern glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...