Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain Ther ; 10(1): 101-114, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33325005

RESUMO

Chronic refractory central post-stroke pain (CPSP), one of the most disabling consequences of cerebral stroke, occurs in up to 10% of patients with CPSP. Because a considerable proportion of these patients with chronic pain remain resistant to pharmacological and behavioral therapies, adjunctive invasive and non-invasive brain stimulation therapies are needed. We performed a review of human studies applying burst and conventional motor cortex stimulation (burstMCS and cMCS, respectively) for chronic pain states, on the basis of data sources identified through searches of PubMed, MEDLINE/OVID, and SCOPUS, as well as manual searches of the bibliographies of known primary and review articles. Our aim was to review and discuss clinical data on the indications of burstMCS for various chronic pain states originating from central stroke (excluding trigeminal facial pain). In addition, we assessed the efficacy and safety of burst versus cMCS for central post-stroke pain with an extended follow-up of 5 years in a 60-year-old man. According to our review, uncontrolled observational human cohort studies and one RCT using cMCS waveforms have revealed a meaningful clinical response; however, these studies lacked placebo groups and extended observation periods. In our case report, we found that 3 months of adjunctive cMCS reduced pain levels [visual analog scale (VAS) pre: 9/10 versus VAS post 7/10], whereas the pain decreased further under burstMCS (VAS pre: 7/10 versus VAS post: 2/10); the study involved a follow-up of 5 years and the following parameters: burst rate 40 Hz (500 Hz), 1-1.75 mA, 1 ms, bipolar configuration. To date, only limited evidence exists for the efficacy and safety of burst motor cortex stimulation for the treatment of refractory chronic pain. BurstMCS resulted in significantly decreased post-stroke pain observed after 5 years of cMCS. The available literature suggests similar efficacy as that of conventional (tonic) motor cortex stimulation, although the results are preliminary. Mechanistically, the precise mechanism of action is not fully understood. However, burstMCS may interact with the nociceptive thalamic-cingulate and descending spinal pain networks. To determine the potential utility of this treatment, large-scale sham-controlled trials comparing cMCS and burstMCS are highly recommended.

2.
Micron ; 100: 50-59, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28500930

RESUMO

Segmental degeneration in the human lumbar spine affects both the intervertebral discs and facet joints. Facet joint degeneration not only affects the cartilage surface, but also alters the cellular properties of the cartilage tissue and the structure of the subchondral bone. The primary focus of this study is the investigation of these microstructural changes that are caused by facet joint degeneration. Microstructural analyses of degenerated facet joint samples, obtained from patients following operative lumbar interbody fusion, have not previously been extensively investigated. This study analyzes human facet joint samples from the inferior articular process using scanning electron microscopy, micro-computed tomography, and energy dispersive X-ray spectroscopy to evaluate parameters of interest in facet joint degeneration such as elemental composition, cartilage layer thickness and cell density, calcification zone thickness, subchondral bone portion, and trabecular bone porosity. These microstructural analyses demonstrate fragmentation, cracking, and destruction of the cartilage layer, a thickened calcification zone, localized calcification areas, and cell cluster formation as pathological manifestations of facet joint degeneration. The detailed description of these microstructural changes is critical for a comprehensive understanding of the pathology of facet joint degeneration, as well as the subsequent development and efficacy analysis of regenerative treatment strategies.


Assuntos
Cartilagem Articular/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Articulação Zigapofisária/diagnóstico por imagem , Articulação Zigapofisária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Disco Intervertebral/patologia , Artropatias/diagnóstico por imagem , Artropatias/patologia , Dor Lombar/diagnóstico , Dor Lombar/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...