Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
PLoS One ; 19(6): e0302269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843177

RESUMO

Intravenous thrombolysis with a recombinant tissue plasminogen activator (rt-PA) is the first-line treatment of acute ischemic stroke. However, successful recanalization is relatively low and the underlying processes are not completely understood. The goal was to provide insights into clinically important factors potentially limiting rt-PA efficacy such as clot size, rt-PA concentration, clot age and also rt-PA in combination with heparin anticoagulant. We established a static in vitro thrombolytic model based on red blood cell (RBC) dominant clots prepared using spontaneous clotting from the blood of healthy donors. Thrombolysis was determined by clot mass loss and by RBC release. The rt-PA became increasingly less efficient for clots larger than 50 µl at a clinically relevant concentration of 1.3 mg/l. A tenfold decrease or increase in concentration induced only a 2-fold decrease or increase in clot degradation. Clot age did not affect rt-PA-induced thrombolysis but 2-hours-old clots were degraded more readily due to higher activity of spontaneous thrombolysis, as compared to 5-hours-old clots. Finally, heparin (50 and 100 IU/ml) did not influence the rt-PA-induced thrombolysis. Our study provided in vitro evidence for a clot size threshold: clots larger than 50 µl are hard to degrade by rt-PA. Increasing rt-PA concentration provided limited thrombolytic efficacy improvement, whereas heparin addition had no effect. However, the higher susceptibility of younger clots to thrombolysis may prompt a shortened time from the onset of stroke to rt-PA treatment.


Assuntos
Heparina , AVC Isquêmico , Proteínas Recombinantes , Terapia Trombolítica , Ativador de Plasminogênio Tecidual , Ativador de Plasminogênio Tecidual/uso terapêutico , Humanos , AVC Isquêmico/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Heparina/uso terapêutico , Terapia Trombolítica/métodos , Fibrinolíticos/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
2.
Leukemia ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877102

RESUMO

Several in vitro models have been developed to mimic chronic lymphocytic leukemia (CLL) proliferation in immune niches; however, they typically do not induce robust proliferation. We prepared a novel model based on mimicking T-cell signals in vitro and in patient-derived xenografts (PDXs). Six supportive cell lines were prepared by engineering HS5 stromal cells with stable expression of human CD40L, IL4, IL21, and their combinations. Co-culture with HS5 expressing CD40L and IL4 in combination led to mild CLL cell proliferation (median 7% at day 7), while the HS5 expressing CD40L, IL4, and IL21 led to unprecedented proliferation rate (median 44%). The co-cultures mimicked the gene expression fingerprint of lymph node CLL cells (MYC, NFκB, and E2F signatures) and revealed novel vulnerabilities in CLL-T-cell-induced proliferation. Drug testing in co-cultures revealed for the first time that pan-RAF inhibitors fully block CLL proliferation. The co-culture model can be downscaled to five microliter volume for large drug screening purposes or upscaled to CLL PDXs by HS5-CD40L-IL4 ± IL21 co-transplantation. Co-transplanting NSG mice with purified CLL cells and HS5-CD40L-IL4 or HS5-CD40L-IL4-IL21 cells on collagen-based scaffold led to 47% or 82% engraftment efficacy, respectively, with ~20% of PDXs being clonally related to CLL, potentially overcoming the need to co-transplant autologous T-cells in PDXs.

3.
Methods Mol Biol ; 2764: 21-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393586

RESUMO

Lately, the need for three-dimensional (3D) cell culture has been recognized in order to closely mimic the organization of native tissues. Thus, 3D scaffolds started to be employed to facilitate the 3D cell organization and enable the artificial tissue formation for the emerging tissue engineering applications. 3D scaffolds can be prepared by various techniques, each with certain advantages and disadvantages. Decellularization is an easy method based on removal of cells from native tissue sample, yielding extracellular matrix (ECM) scaffold with preserved architecture and bioactivity. This chapter provides a detailed protocol for decellularization of pig lung and also some basic assays for evaluation of its effectivity, such as determination of DNA content and histological verification of the selected ECM components. Such decellularized scaffold can subsequently be used for various tissue engineering applications, for example, for recellularization with cells of interest, for natural ECM hydrogel preparation, or as a bioink for 3D bioprinting.


Assuntos
Pulmão , Engenharia Tecidual , Alicerces Teciduais , Animais , Matriz Extracelular , Hidrogéis , Suínos , Engenharia Tecidual/métodos
4.
Sci Rep ; 13(1): 15062, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700192

RESUMO

Human embryonic stem cells (hESCs) have unique abilities that enable their use in cell therapy, disease modeling, and drug development. Their derivation is usually performed using a feeder layer, which is undefined and can potentially cause a contamination by xeno components, therefore there is a tendency to replace feeders with xeno-free defined substrates in recent years. Three hESC lines were successfully derived on the vitronectin with a truncated N-terminus (VTN-N) in combination with E-cadherin in xeno-free conditions for the first time, and their undifferentiated state, hESC morphology, and standard karyotypes together with their potential to differentiate into three germ layers were confirmed. These results support the conclusion that the VTN-N/E-cadherin is a suitable substrate for the xeno-free derivation of hESCs and can be used for the derivation of hESCs according to good manufacturing practices.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Vitronectina , Caderinas/genética , Terapia Baseada em Transplante de Células e Tecidos , Comércio
5.
Adv Clin Exp Med ; 32(8): 901-907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36753379

RESUMO

BACKGROUND: Human embryonic stem cells (hESCs) have the unique ability to differentiate into any cell type in the human body and to proliferate indefinitely. Cell therapies involving hESC have shown very promising results for the treatment of certain diseases and confirmed the safety of hESC-derived cells for humans. They are used in cell therapy, mainly in targeted therapy of diseases that are currently incurable. OBJECTIVES: The aim of this study was the derivation of clinical-grade hESCs usable in drug development, non-native medicine and cell therapy. MATERIAL AND METHODS: Embryos were thawed, cultivated to the blastocyst stage if necessary, and assisted hatching was subsequently performed. Embryoblasts were mechanically isolated using narrow needles. Each line was kept as a separate batch. The derived hESCs were cultured under hypoxic culture conditions (5% O2, 5% CO2, 37°C) in a NutriStem® hPSC XF Medium with a daily medium change. RESULTS: From January 2018 to July 2020, 138 selected clients were asked for consent to donate embryos, of whom 52 did not respond, 19 terminated the storage of their embryos and 29 extended the storage. Only 38 clients (27.5%) agreed to donate embryos for the derivation of hESCs. At the same time, personal communication with clients took place and another 17 embryo donors were recruited. A total of 160 embryos from 55 donors aged 26-42 years were collected. The embryos were frozen at the blastocyst (33.1%) or morula (46.3%) stage. After the preparation of 64 embryos, embryoblasts were isolated and cultured. Finally, 7 hESC lines were obtained, 4 research-grade and 3 clinical-grade, the first in the Czech Republic. CONCLUSIONS: We established a current good manufacturing practice (cGMP)-defined xeno-free and feeder-free system for the derivation, culture and banking of clinical-grade hESC lines that are suitable for preclinical and clinical trials. The quality control testing with criteria concerning sterility, safety and characterization according to cGMP ensured the clinical-grade quality of hESC lines.


Assuntos
Células-Tronco Embrionárias , Qualidade de Vida , Humanos , República Tcheca , Linhagem Celular , Embrião de Mamíferos
6.
ACS Biomater Sci Eng ; 8(11): 4789-4806, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36202388

RESUMO

Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 × 100 µm), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 × 500 µm). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Nanoestruturas/química , Matriz Extracelular , Técnicas de Cultura de Células , Diferenciação Celular
7.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293356

RESUMO

Human embryonic stem cells (hESCs) are increasingly used in clinical trials as they can change the outcome of treatment for many human diseases. They are used as a starting material for further differentiation into specific cell types and to achieve the desirable result of the cell therapy; thus, the quality of hESCs has to be taken into account. Therefore, current good manufacturing practice (cGMP) has to be implemented in the transport of embryos, derivation of inner cell mass to xeno-free, feeder-free and defined hESC culture, and cell freezing. The in-depth characterization of hESC lines focused on safety, pluripotency, differentiation potential and genetic background has to complement this process. In this paper, we show the derivation of three clinical-grade hESC lines, MUCG01, MUCG02, and MUCG03, following these criteria. We developed and validated the system for the manufacture of xeno-free and feeder-free clinical-grade hESC lines that present high-quality starting material suitable for cell therapy according to cGMP.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Técnicas de Cultura de Células , Células-Tronco Embrionárias , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular
8.
Part Fibre Toxicol ; 19(1): 52, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922858

RESUMO

BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCß1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.


Assuntos
Nanopartículas Metálicas , Fosfolipases Tipo C , Colesterol , Humanos , Inflamação , Chumbo , Macrófagos , Nanopartículas Metálicas/química , Óxidos
9.
Sci Rep ; 12(1): 9583, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688908

RESUMO

TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.


Assuntos
Antígenos de Neoplasias , Moléculas de Adesão Celular , Animais , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Regulação para Cima
10.
Tissue Eng Regen Med ; 19(5): 1033-1050, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35670910

RESUMO

BACKGROUND: The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS: By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS: These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION: Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Epitélio , Humanos , Pulmão/metabolismo , Tensoativos/metabolismo
11.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440493

RESUMO

Luciferase reporter assays represent a simple and sensitive experimental system in cell and molecular biology to study multiple biological processes. However, the application of these assays is often limited by the costs of conventional luminometer instruments and the versatility of their use in different experimental conditions. Therefore, we aimed to develop a small, affordable luminometer allowing continuous measurement of luciferase activity, designed for inclusion into various kinds of tissue culture incubators. Here, we introduce LuminoCell-an open-source platform for the construction of an affordable, sensitive, and portable luminometer capable of real-time monitoring in-cell luciferase activity. The LuminoCell costs $40, requires less than 1 h to assemble, and it is capable of performing real-time sensitive detection of both magnitude and duration of the activity of major signalling pathways in cell cultures, including receptor tyrosine kinases (EGF and FGF), WNT/ß-catenin, and NF-κB. In addition, we show that the LuminoCell is suitable to be used in cytotoxicity assays as well as for monitoring periodic circadian gene expression.


Assuntos
NF-kappa B , Transdução de Sinais , Luciferases/genética , Luciferases/metabolismo , NF-kappa B/metabolismo
12.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203356

RESUMO

Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1ß as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/ß, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.


Assuntos
Poluentes Ambientais , Inflamação , NF-kappa B , Receptores de Hidrocarboneto Arílico , Células A549 , Poluentes Ambientais/toxicidade , Humanos , Inflamação/patologia , NF-kappa B/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
13.
Front Cell Dev Biol ; 9: 755740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796176

RESUMO

The egg plays a pivotal role in the reproduction of our species. Nevertheless, its fundamental biology remains elusive. Transmission electron microscopy is traditionally used to inspect the ultrastructure of female gametes. However, two-dimensional micrographs contain only fragmentary information about the spatial organization of the complex oocyte cytoplasm. Here, we employed the Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) to explore human oocyte intracellular morphology in three dimensions (3D). Volume reconstruction of generated image stacks provided an unprecedented view of ooplasmic architecture. Organelle distribution patterns observed in nine donor oocytes, representing three maturational stages, documented structural changes underlying the process by which the egg acquires developmental competence. 3D image segmentation was performed to extract information about distinct organelle populations, and the following quantitative analysis revealed that the mitochondrion occupies ∼ 4.26% of the maturing oocyte cytoplasm. In summary, this proof-of-concept study demonstrates the potential of large volume electron microscopy to study rare samples of delicate female gametes and paves the way for applying the FIB-SEM technique in human oocyte research.

14.
Stem Cell Res ; 57: 102574, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715503

RESUMO

Human embryonic stem cells (hESCs) represent a virtually unlimited source of cells suitable for a variety of biomedical applications. However, a diminishing allogeneic background and undefined culture conditions are essential for developing robust and replicable protocols for differentiation experiments, disease modeling, and drug testing. Therefore, here we report the generation of the two sex-discordant sibling hESC lines, MUNIe008-A and MUNIe009-A, using the mechanical biopsy of vitrified-thawed embryos under xeno- and feeder-free conditions. The presented approach is applicable for deriving high-quality clinical-grade hESC lines for cell replacement therapies.

15.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072085

RESUMO

In the fast-developing field of tissue engineering there is a constant demand for new materials as scaffolds for cell seeding, which can better mimic a natural extracellular matrix as well as control cell behavior. Among other materials, polysaccharides are widely used for this purpose. One of the main candidates for scaffold fabrication is alginate. However, it lacks sites for cell adhesion. That is why one of the steps toward the development of suitable scaffolds for cells is the introduction of the biofunctionality to the alginate structure. In this work we focused on bone-sialoprotein derived peptide (TYRAY) conjugation to the molecule of alginate. Here the comparison study on four different approaches of peptide conjugation was performed including traditional and novel modification methods, based on 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS), 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (DMTMM), thiol-Michael addition and Cu-catalyzed azide-alkyne cycloaddition reactions. It was shown that the combination of the alginate amidation with the use of and subsequent Cu-catalyzed azide-alkyne cycloaddition led to efficient peptide conjugation, which was proven with both NMR and XPS methods. Moreover, the cell culture experiment proved the positive effect of peptide presence on the adhesion of human embryonic stem cells.


Assuntos
Alginatos/química , Biomimética , Peptídeos/química , Engenharia Tecidual , Alicerces Teciduais , Aminas/química , Biomimética/métodos , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Click , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeos/farmacologia , Engenharia Tecidual/métodos
16.
Ceska Gynekol ; 86(1): 5-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752402

RESUMO

OBJECTIVE: The work deals with a clinical part of human embryonic stem cell (hESC) research. The aim of the project is the differentiation of somatic cell types, useful in drug development, regenerative medicine and cell therapy. The aim of this work is to enable targeted therapy of yet incurable diseases. The pluripotent hESCs have unlimited self-renewal capacity. This ability is used in therapy to create missing or damaged cells in the human body. It is of interest to develop clinical-grade hESC lines useful in preclinical and clinical studies. METHODS: The derivation of the hESC must respect the legislation of the Czech Republic and the EU. The aim was to develop an informed consent of both donors for donated discarded embryos that are not suitable for treatment by in vitro fertilization according to Directive 2004/23/EC. The FNBs Center for Assisted Reproduction (CAR) participates in oocyte collection, cultivation and cryopreservation of embryos, communication with clients and ensuring the informed consent of embryo donors. A transport protocol and a methodology for handing over the thawed embryos with the original numerical code were developed. Before the embryos are handed over to the ICRC co-authors workplace (CTEF), they are thawed and, if necessary, recultivated to the blastocyst stage; afterwards, assisted hatching is performed. RESULTS: In the period from January 2018 to July 2020, 138 selected suitable clients were asked for donations, with 52 not responding, 19 terminating and 29 extending the embryo storage. Only 38 clients, i.e. 27.5%, agreed with the usage of their embryos for the preparation of hESCs. In the same period, personal communication with suitable CAR clients took place and another 17 embryo donors were obtained. A total of 160 embryos were obtained from 55 donors aged 26 to 42 years. The embryos were most often frozen in the blastocyst (53 embryos - 33.1%) and morula (74 embryos - 46.3%) stages. Of the 29 genetically examined embryos, only 5 are euploid (17.2%), 2 are mosaic and 22 are aneuploid or with translocations or carriers with a monogenic defect. CONCLUSION: We have an informed consent prepared and approved by the Ethics Committee of the Masaryk University and the University Hospital Brno; 160 donated embryos have been selected and secured. A transport protocol and handover methodology are developed. The plan for the transfer of thawed anonymized embryos in the first phase, October - December 2020, includes approximately 5 thawed blastocysts per week with assisted hatching. After their transfer to the CTEF, the embryoblast will be isolated with subsequent cultivation. The established hESCs must meet the specified criteria of safety, stability and pluripotency. We believe that, in accordance with the project plan, we will obtain at least 3 clinical-grade hESC lines, the first created in the Czech Republic, respecting the requirements for Advanced Medicinal Therapy Products   (AMTP).


Assuntos
Células-Tronco Embrionárias Humanas , Adulto , Blastocisto , República Tcheca , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Fertilização in vitro , Humanos
17.
Free Radic Biol Med ; 162: 14-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271281

RESUMO

Endothelial cell (EC) glycocalyx (GLX) comprise a multicomponent layer of proteoglycans and glycoproteins. Alteration of its integrity contributes to chronic vascular inflammation and leads to the development of cardiovascular diseases. Myeloperoxidase (MPO), a highly abundant enzyme released by polymorphonuclear neutrophils, binds to the GLX and deleteriously affects vascular EC functions. The focus of this study was to elucidate the mechanisms of MPO-mediated alteration of GLX molecules, and to unravel subsequent changes in endothelial integrity and function. MPO binding to GLX of human ECs and subsequent internalization was mediated by cell surface heparan sulfate chains. Moreover, interaction of MPO, which is carrying a cationic charge, with anionic glycosaminoglycans (GAGs) resulted in reduction of their relative charge. By means of micro-viscometry and atomic force microscopy, we disclosed that MPO can crosslink GAG chains. MPO-dependent modulation of GLX structure was further supported by alteration of wheat germ agglutinin staining. Increased expression of ICAM-1 documented endothelial cell activation by both catalytically active and also inactive MPO. Furthermore, MPO increased vascular permeability connected with reorganization of intracellular junctions, however, this was dependent on MPO's catalytic activity. Novel proteins interacting with MPO during transcytosis were identified by proteomic analysis. Altogether, these findings provide evidence that MPO through interaction with GAGs modulates overall charge of the GLX, causing modification of its structure and thus affecting EC function. Importantly, our results also suggest a number of proteins interacting with MPO that possess a variety of cellular localizations and functions.


Assuntos
Peroxidase , Proteômica , Células Endoteliais , Endotélio Vascular , Humanos , Neutrófilos
18.
Front Bioeng Biotechnol ; 8: 552357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344428

RESUMO

INTRODUCTION: Pulsed field ablation (PFA) exploits the delivery of short high-voltage shocks to induce cells death via irreversible electroporation. The therapy offers a potential paradigm shift for catheter ablation of cardiac arrhythmia. We designed an AC-burst generator and therapeutic strategy, based on the existing knowledge between efficacy and safety among different pulses. We performed a proof-of-concept chronic animal trial to test the feasibility and safety of our method and technology. METHODS: We employed 6 female swine - weight 53.75 ± 4.77 kg - in this study. With fluoroscopic and electroanatomical mapping assistance, we performed ECG-gated AC-PFA in the following settings: in the left atrium with a decapolar loop catheter with electrodes connected in bipolar fashion; across the interventricular septum applying energy between the distal electrodes of two tip catheters. After procedure and 4-week follow-up, the animals were euthanized, and the hearts were inspected for tissue changes and characterized. We perform finite element method simulation of our AC-PFA scenarios to corroborate our method and better interpret our findings. RESULTS: We applied square, 50% duty cycle, AC bursts of 100 µs duration, 100 kHz internal frequency, 900 V for 60 pulses in the atrium and 1500 V for 120 pulses in the septum. The inter-burst interval was determined by the native heart rhythm - 69 ± 9 bpm. Acute changes in the atrial and ventricular electrograms were immediately visible at the sites of AC-PFA - signals were elongated and reduced in amplitude (p < 0.0001) and tissue impedance dropped (p = 0.011). No adverse event (e.g., esophageal temperature rises or gas bubble streams) was observed - while twitching was avoided by addition of electrosurgical return electrodes. The implemented numerical simulations confirmed the non-thermal nature of our AC-PFA and provided specific information on the estimated treated area and need of pulse trains. The postmortem chest inspection showed no peripheral damage, but epicardial and endocardial discolorations at sites of ablation. T1-weighted scans revealed specific tissue changes in atria and ventricles, confirmed to be fibrotic scars via trichrome staining. We found isolated, transmural and continuous scars. A surviving cardiomyocyte core was visible in basal ventricular lesions. CONCLUSION: We proved that our method and technology of AC-PFA is feasible and safe for atrial and ventricular myocardial ablation, supporting their systematic investigation into effectiveness evaluation for the treatment of cardiac arrhythmia. Further optimization, with energy titration or longer follow-up, is required for a robust atrial and ventricular AC-PFA.

19.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228049

RESUMO

The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFß1), interleukin 6(IL-6), IL-1α and IL-1ß , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.


Assuntos
Poluentes Atmosféricos/farmacocinética , Chumbo/farmacocinética , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nitratos/farmacocinética , Actinas/agonistas , Actinas/genética , Actinas/imunologia , Administração por Inalação , Poluentes Atmosféricos/toxicidade , Animais , Disponibilidade Biológica , Feminino , Expressão Gênica , Meia-Vida , Exposição por Inalação/análise , Interleucina-1alfa/agonistas , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/agonistas , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/agonistas , Interleucina-6/genética , Interleucina-6/imunologia , Chumbo/toxicidade , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/agonistas , NF-kappa B/genética , NF-kappa B/imunologia , Nitratos/toxicidade , Espectrofotometria Atômica , Distribuição Tecidual , Fator de Crescimento Transformador beta1/agonistas , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Fator de Necrose Tumoral alfa/agonistas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
20.
Front Cell Dev Biol ; 8: 574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850782

RESUMO

FGF signaling plays an essential role in lung development, homeostasis, and regeneration. We employed mouse 3D cell culture models and imaging to study ex vivo the role of FGF ligands and the interplay of FGF signaling with epithelial growth factor (EGF) and WNT signaling pathways in lung epithelial morphogenesis and differentiation. In non-adherent conditions, FGF signaling promoted formation of lungospheres from lung epithelial stem/progenitor cells (LSPCs). Ultrastructural and immunohistochemical analyses showed that LSPCs produced more differentiated lung cell progeny. In a 3D extracellular matrix, FGF2, FGF7, FGF9, and FGF10 promoted lung organoid formation. FGF9 showed reduced capacity to promote lung organoid formation, suggesting that FGF9 has a reduced ability to sustain LSPC survival and/or initial divisions. FGF7 and FGF10 produced bigger organoids and induced organoid branching with higher frequency than FGF2 or FGF9. Higher FGF concentration and/or the use of FGF2 with increased stability and affinity to FGF receptors both increased lung organoid and lungosphere formation efficiency, respectively, suggesting that the level of FGF signaling is a crucial driver of LSPC survival and differentiation, and also lung epithelial morphogenesis. EGF signaling played a supportive but non-essential role in FGF-induced lung organoid formation. Analysis of tissue architecture and cell type composition confirmed that the lung organoids contained alveolar-like regions with cells expressing alveolar type I and type II cell markers, as well as airway-like structures with club cells and ciliated cells. FGF ligands showed differences in promoting distinct lung epithelial cell types. FGF9 was a potent inducer of more proximal cell types, including ciliated and basal cells. FGF7 and FGF10 directed the differentiation toward distal lung lineages. WNT signaling enhanced the efficiency of lung organoid formation, but in the absence of FGF10 signaling, the organoids displayed limited branching and less differentiated phenotype. In summary, we present lung 3D cell culture models as useful tools to study the role and interplay of signaling pathways in postnatal lung development and homeostasis, and we reveal distinct roles for FGF ligands in regulation of mouse lung morphogenesis and differentiation ex vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...