Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 328, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322410

RESUMO

BACKGROUND: Septoria tritici blotch (STB) remains a significant obstacle to durum wheat cultivation on a global scale. This disease remains a challenge for farmers, researchers, and breeders, who are collectively dedicated to reduce its damage and improve wheat resistance. Tunisian durum wheat landraces have been recognized as valuable genetic ressources that exhibit resistance to biotic and abiotic stresses and therefore play a crucial role in breeding program aimed at creating new wheat varieties resistant to fungal diseases as STB, as well as adapted to climate change constraints. RESULTS: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC > 0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. CONCLUSIONS: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. Accessions grouping pattern reflected the geographical origins of the landraces. We suggested that GS2 accessions were mostly derived from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 susceptible Azizi and Jneh Khotifa accessions.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Melhoramento Vegetal , Genética Populacional , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
2.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771636

RESUMO

Climate changes over the past 25 years have led to conducive conditions for invasive and transboundary fungal disease occurrence, including the re-emergence of wheat stem rust disease, caused by Puccinia graminis f.sp. tritici (Pgt) in East Africa, Europe, and the Mediterranean basin. Since 2018, sporadic infections have been observed in Tunisia. In this study, we investigated Pgt occurrence at major Tunisian wheat growing areas. Pgt monitoring, assessment, and sampling from planted trap nurseries at five different locations over two years (2021 and 2022) revealed the predominance of three races, namely TTRTF (Clade III-B), TKKTF (Clade IV-F), and TKTTF (Clade IV-B). Clade III-B was the most prevalent in 2021 as it was detected at all locations, while in 2022 Pgt was only reported at Beja and Jendouba, with the prevalence of Clade IV-B. The low levels of disease incidence during these two years and Pgt population diversity suggest that this fungus most likely originated from exotic incursions and that climate factors could have caused disease establishment in Tunisia. Further evaluation under the artificial disease pressure of Tunisian wheat varieties and weather-based modeling for early disease detection in the Mediterranean area could be helpful in monitoring and predicting wheat stem rust emergence and epidemics.

3.
BMC Genomics ; 23(1): 372, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581550

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. RESULTS: In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession 'Agili39'. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6%), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42%) and has been effective at the field trials against two Z. tritici isolates. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5 Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16% and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. CONCLUSION: This study demonstrates that Z. tritici resistance in the 'Agili39' landrace accession is controlled by two minor and two major QTL acting in an additive mode. We also provide evidence that the broad efficacy of the resistance to STB in 'Agili 39' is due to a natural pyramiding of these QTL. A sustainable use of this Z. tritici resistance source and a positive selection of the linked markers to the identified QTL will greatly support effective breeding for Z. tritici resistance in durum wheat.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plântula/genética , Triticum/genética
4.
BMC Genom Data ; 22(1): 3, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568058

RESUMO

BACKGROUND: Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. RESULTS: Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. CONCLUSION: Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


Assuntos
Variação Genética , Triticum/genética , Repetições de Microssatélites/genética , Fenótipo , Triticum/classificação , Tunísia
5.
Fungal Genet Biol ; 79: 42-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092789

RESUMO

Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Doenças das Plantas/microbiologia , Proteoma/análise , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Cromatografia Líquida , Eletroforese , Espectrometria de Massas , Espectrometria de Massas em Tandem
6.
Fungal Genet Biol ; 79: 54-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092790

RESUMO

Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Necrose/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Luz , Espectrometria de Massas , Estabilidade Proteica , Temperatura , Fatores de Virulência/química
7.
Fertil Steril ; 90(3): 853-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18258235

RESUMO

The expression and localization of the human sperm protein hCAP-18/SOB3 were evaluated in human testis and epididymis through in situ hybridization and immunohistochemistry with the use of an anti-recombinant hCAP-18/SOB3 polyclonal antibody. Both hCAP-18/SOB3 messenger RNA and hCAP-18/SOB3 protein were detected in testis germinal cells (from late spermatogonia to spermatozoa) and in the epididymal epithelium. This localization is in agreement with the antimicrobial properties previously described and supports its involvement in zona pellucida binding, as we had previously suggested.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Catelicidinas , Humanos , Masculino , Distribuição Tecidual
8.
Int J Dev Biol ; 47(1): 71-6, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12653254

RESUMO

We screened a mouse germinal cell expression library with a probe derived from Sob1, a human testis-specific cDNA, and identified 2P1, a new mouse cDNA. A database search revealed that 2P1 was 91% identical to ORF1 of E3-3, a rat gene probably involved in the regulation of alternative splicing. Sequencing showed that 2P1 has a destabilization motif in its 3'-untranslated region. Northern blotting showed strong gene expression in the testis and weak expression in the epididymis, with no signal detected in other tissues. RT-PCR analysis confirmed testis and epididymis expression. In situ hybridization revealed that 2P1 mRNA was absent in spermatogonia but expressed in spermatocytes. This last result was confirmed by RT-PCR of FACS isolated primary spermatocytes (pachytene stage). Using RT-PCR, purified spermatids were also shown to express 2P1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Meiose , Espermátides/fisiologia , Espermatócitos/fisiologia , Espermatogênese , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Proteínas de Transporte/metabolismo , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , DNA Complementar/metabolismo , Expressão Gênica , Células Germinativas/citologia , Humanos , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/fisiologia
9.
Genetics ; 161(4): 1497-505, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12196395

RESUMO

An F(1) mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage groups spanning 1216 cM. Many AFLPs and some RAPD markers were clustered. When markers were reduced to 1 per cluster, 229 unique positions were mapped, with an average distance of 5.3 cM between markers. Because M. graminicola probably has 17 or 18 chromosomes, at least 5 of the 23 linkage groups probably will need to be combined with others once additional markers are added to the map. This was confirmed by pulsed-field gel analysis; probes derived from 2 of the smallest linkage groups hybridized to two of the largest chromosome-sized bands, revealing a discrepancy between physical and genetic distance. The utility of the map was demonstrated by identifying molecular markers tightly linked to two genes of biological interest, mating type and avirulence. Bulked segregant analysis was used to identify additional molecular markers closely linked to these traits. This is the first genetic linkage map for any species in the genus Mycosphaerella or the family Mycosphaerellaceae.


Assuntos
Mapeamento Cromossômico , Fungos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Eletroforese em Gel de Campo Pulsado , Fungos/patogenicidade , Marcadores Genéticos , Triticum/genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...