Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860525

RESUMO

This study demonstrates a linearly polarized Er-doped fiber laser system featuring an all-polarization-maintaining (all-PM) architecture. Short pulses were generated by Q-switching operation based on drop-casting rhenium disulfide (ReS2) saturable absorber (SA) onto a fiber connector placed inside the laser cavity. The Q-switching operation of the laser was able to self-start at a low (23 mW) threshold power of the pump and without the need to use a polarization controller. The proposed laser was able to produce stable pulses with a center wavelength and 3-dB bandwidth of 1558.4 nm and 0.13 nm, respectively. The shortest pulse duration measured (2.8 µs) was achieved at a repetition rate of 37.6 kHz while the highest average output power and pulse energy were 2.2 mW and 76.5 nJ, respectively. Furthermore, as the cavity of the laser was designed to be all-PM the laser that it produced was linearly polarized and had a degree of polarization (DOP) at the level of 94.5 % and 40 dB polarization extinction ratio (PER). Therefore, the proposed laser is a suitable light source for optical applications in environments that are complex.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578683

RESUMO

Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...