Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38267729

RESUMO

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Bainha de Mielina/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Progressão da Doença , Atrofia/patologia
2.
Ann Neurol ; 94(2): 366-383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37039158

RESUMO

OBJECTIVE: To determine the prognostic value of persisting neuroinflammation in multiple sclerosis (MS) lesions, we developed a 18 kDa-translocator-protein-positron emission tomography (PET) -based classification of each lesion according to innate immune cell content and localization. We assessed the respective predictive value of lesion phenotype and diffuse inflammation on atrophy and disability progression over 2 years. METHODS: Thirty-six people with MS (disease duration 9 ± 6 years; 12 with relapsing-remitting, 13 with secondary-progressive, and 11 with primary-progressive) and 19 healthy controls (HCs) underwent a dynamic [18 F]-DPA-714-PET. At baseline and after 2 years, the patients also underwent a magnetic resonance imaging (MRI) and neurological examination. Based on a threshold of significant inflammation defined by a comparison of [18 F]-DPA-714 binding between patients with MS and HCs, white matter lesions were classified as homogeneously active (active center), rim-active (inactive center and active periphery), or nonactive. Longitudinal cortical atrophy was measured using Jacobian integration. RESULTS: Patients with MS had higher innate inflammation in normal-appearing white matter (NAWM) and cortex than HCs (respective standardized effect size = 1.15, 0.89, p = 0.003 and < 0.001). Out of 1,335 non-gadolinium-enhancing lesions, 53% were classified as homogeneously-active (median = 17 per patient with MS), 6% rim-active (median = 1 per patient with MS), and 41% non-active (median = 14 per patient with MS). The number of homogenously-active lesions was the strongest predictor of longitudinal changes, associating with cortical atrophy (ß = 0.49, p = 0.023) and Expanded Disability Status Scale (EDSS) changes (ß = 0.35, p = 0.023) over 2 years. NAWM and cortical binding were not associated to volumetric and clinical changes. INTERPRETATION: The [18 F]-DPA-714-PET revealed that an unexpectedly high proportion of MS lesions have a smoldering component, which predicts atrophy and clinical progression. This suggests that following the acute phase, most lesions develop a chronic inflammatory component, promoting neurodegeneration and clinical progression. ANN NEUROL 2023;94:366-383.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/patologia , Substância Branca/patologia , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética/métodos , Inflamação/metabolismo , Progressão da Doença , Atrofia/patologia , Encéfalo/patologia , Esclerose Múltipla Recidivante-Remitente/patologia
3.
Front Neurosci ; 16: 1004050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408404

RESUMO

Detecting new lesions is a key aspect of the radiological follow-up of patients with Multiple Sclerosis (MS), leading to eventual changes in their therapeutics. This paper presents our contribution to the MSSEG-2 MICCAI 2021 challenge. The challenge is focused on the segmentation of new MS lesions using two consecutive Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). In other words, considering longitudinal data composed of two time points as input, the aim is to segment the lesional areas, which are present only in the follow-up scan and not in the baseline. The backbone of our segmentation method is a 3D UNet applied patch-wise to the images, and in which, to take into account both time points, we simply concatenate the baseline and follow-up images along the channel axis before passing them to the 3D UNet. Our key methodological contribution is the use of online hard example mining to address the challenge of class imbalance. Indeed, there are very few voxels belonging to new lesions which makes training deep-learning models difficult. Instead of using handcrafted priors like brain masks or multi-stage methods, we experiment with a novel modification to online hard example mining (OHEM), where we use an exponential moving average (i.e., its weights are updated with momentum) of the 3D UNet to mine hard examples. Using a moving average instead of the raw model should allow smoothing of its predictions and allow it to give more consistent feedback for OHEM.

4.
Eur J Neurol ; 29(6): 1719-1729, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35152511

RESUMO

BACKGROUND AND PURPOSE: Lesion remyelination preserves axonal integrity in animal models of multiple sclerosis (MS), but an in vivo demonstration of its protective effect on surrounding tissues in humans is lacking. METHODS: Nineteen persons with MS were enrolled in a cohort study and underwent two positron emission tomography (PET)/magnetic resonance imaging (MRI) scans 1-4 months apart. Voxelwise maps of Pittsburgh compound B distribution volume ratio, reflecting myelin content, were used to calculate an index of baseline demyelination, and of dynamic demyelination and remyelination over the follow-up in 549 single white matter lesions. Changes in fractional anisotropy and mean diffusivity, reflecting microstructural damage, were calculated in the proximal and distal 3-mm-thick rings surrounding each lesion, and used to classify perilesional microstructure as "preserved" or "worsening" over the follow-up. Mixed-effect linear models and logistic regressions were employed to investigate whether PET-derived lesional indices were associated with changes in MRI metrics in perilesions, and to identify which of them best predicted the microstructural evolution of perilesions over time. RESULTS: A higher index of remyelination, and a lower index of baseline and dynamic demyelination in lesions were associated with a less severe microstructural deterioration of the corresponding proximal and distal perilesions over time (p-value range: <0.001-0.012), but the index of remyelination was the best predicting variable of perilesional fate. For every extra 1% of remyelination within each lesion, the probability of the corresponding perilesional microstructure remaining preserved over time increased by 39% (odds ratio = 6.62, 95% confidence interval = 2.16-20.32, p < 0.001). CONCLUSIONS: Intralesional remyelination is associated with the microstructural preservation of surrounding tissues, possibly preventing neuroaxonal damage resulting from Wallerian degeneration.


Assuntos
Esclerose Múltipla , Remielinização , Animais , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia
5.
Radiology ; 301(1): 166-177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34254858

RESUMO

Background Choroid plexuses (CPs) have been suggested as a key gateway for inflammation in experimental autoimmune encephalitis, but in vivo evidence of their involvement in multiple sclerosis (MS) is lacking. Purpose To assess CP volumetric and inflammatory changes in patients with MS versus healthy control participants. Materials and Methods This was a secondary analysis of 97 patients (61 with relapsing-remitting MS [RRMS] and 36 with progressive MS) and 44 healthy control participants who participated in three prospective 3.0-T brain MRI studies between May 2009 and September 2017. A subgroup of 37 patients and 19 healthy control participants also underwent translocator protein fluorine 18 (18F)-DPA-714 PET for neuroinflammation. Relapses and disability scores were collected at baseline and over 2 years. CPs were manually segmented on three-dimensional T1-weighted images; other brain volumes were additionally segmented. Volumes were expressed as a ratio of intracranial volume. The 18F-DPA-714 distribution volume ratio was quantified in parenchymal regions, whereas standardized uptake value was used for CP inflammation. Multivariable linear regression analyses were performed to assess CP volumetric and inflammatory differences between patients with MS and healthy control participants and correlations between CP volume and lesion load, brain volumes, 18F-DPA-714 uptake, and annualized relapse rate. Results Ninety-seven patients with MS (mean age, 42 years ± 12 [standard deviation]; 49 women) and 44 healthy control participants (mean age, 39 years ± 14; 23 women) underwent MRI. Thirty-seven patients with MS and 19 healthy control participants underwent PET. CPs were 35% larger in patients with MS (mean value, 15.9 × 10-4 ± 4.5) than in healthy control participants (mean value, 11.8 × 10-4 ± 3.8; P = .004). Subgroup analysis confirmed greater CP volume in patients with RRMS (mean value, 15.5 × 10-4 ± 4.6; P = .008) than in healthy control participants. CP enlargement was greater in patients with active lesions at MRI (mean volume, 18.2 × 10-4 ± 4.9 in patients with lesions that enhanced with gadolinium vs 14.9 × 10-4 ± 4 in patients with lesions that did not enhance with gadolinium; P < .001) and correlated with white matter lesion load (r = 0.39; 95% CI: 0.20, 0.55; P < .001) and 18F-DPA-714 binding in the thalami (r = 0.44; 95% CI: 0.22, 0.72; P = .04) and normal-appearing white matter (r = 0.5; 95% CI: 0.20, 0.71; P = .005). Moreover, it correlated with annualized relapse rate in patients with RRMS (r = 0.37; 95% CI: 0.1, 0.55; P = .005). Finally, patients with MS showed 18.5% higher CP 18F-DPA-714 uptake than control participants (mean value, 0.778 ± 0.23 vs 0.635 ± 0.15, respectively; P = .01). CP volume in patients with RRMS (r = 0.57; 95% CI: 0.37, 0.73; P = .009) correlated with higher 18F-DPA-714 uptake. Conclusion Choroid plexuses (CPs) are enlarged and inflamed in patients with multiple sclerosis (MS), particularly in those with relapsing-remitting MS with inflammatory profiles; CP volumetric analysis could represent an MS imaging marker. © RSNA, 2021 EudraCT no. 2008-004174-40; clinical trial registration nos. NCT02305264 and NCT01651520 Online supplemental material is available for this article.


Assuntos
Plexo Corióideo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/genética , Adulto , Plexo Corióideo/diagnóstico por imagem , Feminino , Humanos , Inflamação/complicações , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Tamanho do Órgão , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...