Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(31): 27532-27541, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967020

RESUMO

Solar photovoltaic (PV) energy generation is highly dependent on weather conditions and only applicable when the sun is shining during the daytime, leading to a mismatch between demand and supply. Merging PVs with battery storage is the straightforward route to counteract the intermittent nature of solar generation. Capacity (or energy density), overall efficiency, and stability at elevated temperatures are among key battery performance metrics for an integrated PV-battery system. The performance of high-capacity silicon (Si)/graphite (Gr) anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode cells at room temperature, 45, and 60 °C working temperatures for PV modules are explored. The electrochemical performance of both half and full cells are tested using a specially formulated electrolyte, 1 M LiPF6 in ethylene carbonate: diethyl carbonate, with 5 wt % fluoroethylene carbonate, 2 wt % vinylene carbonate, and 1 wt % (2-cyanoethyl)triethoxysilane. To demonstrate solar charging, perovskite solar cells (PSCs) are coupled to the developed batteries, following the evaluation of each device. An overall efficiency of 8.74% under standard PV test conditions is obtained for the PSC charged lithium-ion battery via the direct-current-direct-current converter, showing the promising applicability of silicon/graphite-based anodes in the PV-battery integrated system.

2.
ACS Appl Mater Interfaces ; 11(32): 29276-29289, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31329408

RESUMO

Synthosomes are polymer vesicles with transmembrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest ß-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Δ1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA ΔCVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Membranas Artificiais , Nanoporos , Transporte de Íons , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...