Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Educ Health Promot ; 13: 95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726092

RESUMO

BACKGROUND: Due to the effect of coronavirus disease 2019 (COVID-19) outbreak on the continuation, schedule, and efficiency of radiation therapy, this study aimed to investigate the reliability and validity of the COVID-19 Safety Measures (CSM) questionnaire at the radiation therapy center. MATERIALS AND METHODS: In this analytical cross-sectional study, which all personnel of the radiation therapy center (20 people) participated, the validity and reliability of the 16-item CSM questionnaire were investigated. Cultural adaptation, face validity, content validity, test-retest reliability, and internal consistency were evaluated. For face and content validity, impact score, content validity ratio, and content validity index (CVR and CVI) were calculated, respectively. Also, internal consistency and stability reliability were calculated with Kuder-Richardson (KR20) alpha and Pearson correlation coefficient and intraclass correlation (ICC), respectively. Data analysis was performed using Statistical Package for the Social Sciences (SPSS) 24 with a significant level of 5%. RESULTS: Out of 20 employees, 70% (14 people) were female, 75% (15 people) were married and the mean age (SD) was 32.4 (6.35) years. Scale-based Kuder-Richardson alpha, S-CVI, ICC, and confidence interval were 0.79, 0.97, 0.68, and 0.38-0.89, respectively. CONCLUSION: The validity and reliability of the 16-item CSM questionnaire were confirmed. Therefore, the application of this scale is recommended.

2.
Drug Dev Ind Pharm ; 50(3): 262-273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334353

RESUMO

OBJECTIVE: The present study aimed to assess the radioprotective effect of nanoniosomes loaded by Mentha Pulegium essential oil (MPEO-N nanoparticles) as a natural antioxidant on human peripheral blood mononuclear cells (PBMCs). SIGNIFICANCE: Despite the applications and advantages of ionizing radiation, there are many radiation risks to biological systems that are necessary to be reduced as much as possible. METHODS: MPEO-N nanoparticles were prepared by the lipid thin film hydration method, and its physicochemical characteristics were analyzed. PBMCs were then irradiated with X-ray using a 6 MV linear accelerator at two radiation doses in the presence of nontoxic concentrations of MPEO-N nanoparticles (IC10). After 48 and 72 h of incubation, the radioprotective effect was investigated by measuring survival, apoptosis, and necrosis of PBMCs, using MTT assay and flow cytometry analysis. KEY FINDINGS: The hydrodynamic diameter and zeta potential of nanoniosomes were 106.0 ± 4.69 nm and -15.2 ± 0.9 mV, respectively. The mean survival percentage of PBMCs showed a significant increase only at a radiation dose of 200 cGy compared with the control group. The percentages of apoptosis and necrosis of cells in the presence of MPEO-N nanoparticles at both radiation doses and incubation periods (48 and 72 h) demonstrated a significant reduction compared with the control. CONCLUSION: MPEO-N nanoparticles as a natural antioxidant, exhibited a favorable radioprotective effect by a significant reduction in the percentage of apoptosis and necrosis of irradiated PBMCs.


Assuntos
Mentha pulegium , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Antioxidantes/farmacologia , Leucócitos Mononucleares , Radiação Ionizante , Necrose
3.
J Biomed Phys Eng ; 13(5): 411-420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868939

RESUMO

Background: Radiotherapy is considered a compromise between the amount of killed tumor cells and the damage caused to the healthy tissue. Regarding this, radiobiological modeling is performed to individualize and optimize treatment strategies. Objective: This study aimed to determine the normal tissue complication probability (NTCP) of acute ocular pain following radiotherapy. Material and Methods: In this prospective observational study, the clinical data were collected from 45 patients with head and neck cancers and skull-base tumors, and dosimetric data were recorded after contouring the eye globe. Acute ocular pain was prospectively assessed with a three-month follow-up. The Lyman-Kutcher-Berman (LKB) parameters were estimated using the Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) maximization and Maximum Likelihood (MLH) methods, and the NTCP of acute ocular pain was then determined using generalized LKB radiobiological model. The model performance was evaluated with AUC, Brier score, and Hosmer-Lemeshow tests. Results: Six out of 45 (13.33%) patients developed acute ocular pain (grade 1 or more). LKB model showed a weak dose-volume effect (n=0.09), tolerance dose for a 50% complication (TD50) of 27.54 Gy, and slope parameter (m) of 0.38. The LKB model showed high prediction performance. The LKB model predicted that NTCP would be less than 25% if the generalized equivalent uniform dose (gEUD) was kept below 20 Gy. Conclusion: The LKB model showed a high performance in determining the NTCP of ocular pain so that the probability of ocular pain will be less than 25% if the eye globe mean dose is kept below 12 Gy.

4.
Phys Med ; 112: 102621, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329741

RESUMO

PURPOSE: Radiation therapy is broadly used as one of the main treatment methods for patients with head and neck cancers and skull base tumors. However, it can lead to normal tissue complications. Therefore, this study aimed to model normal tissue complication probability (NTCP) of eyelid skin erythema after radiation therapy. METHODS: The dataset of 45 patients with head and neck and skull base tumors was prospectively collected from their dose-volume histograms (DVHs). Grade 1 + eyelid skin erythema based on the Common Terminology Criteria for Adverse Events (CTCAE 4.0) was evaluated as the endpoint after a three-month follow-up. The Lyman-Kutcher-Burman (LKB) radiobiological model was developed based on generalized equivalent uniform dose (gEUD). Model parameters were calculated by maximum likelihood estimation. Model performance was evaluated by ROC-AUC, Brier score and Hosmer-Lemeshow test. RESULTS: After three months of follow-up, 13.33% of patients experienced eyelids skin erythema grade 1 or more. The parameters of the LKB model were: TD50 = 30 Gy, m = 0.14, and n = 0.10. The model showed good predictive performance with ROC-AUC = 0.80 (CI:0.66-0.94) and a Brier score of 0.20. CONCLUSIONS: In this study, NTCP of eyelid skin erythema was modeled based on the LKB radiobiological model with good predictive performance.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias da Base do Crânio , Humanos , Probabilidade , Neoplasias de Cabeça e Pescoço/radioterapia , Crânio , Pálpebras , Eritema/etiologia , Dosagem Radioterapêutica
5.
J Biomed Phys Eng ; 12(5): 513-520, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36313405

RESUMO

Background: The X-ray is a critical diagnostic and therapeutic tool with harmful effects. The International Commission on Radiological Protection (ICRP) has some recommendations regarding applying radiation protection principles. Objective: This study aimed to determine the standards of the typical radiation protection in radiographic departments of hospitals in Iran. Material and Methods: In this cross-sectional descriptive study, the usual radiation protection standards in places, such as the physical environment of the control and waiting rooms, radiographic devices, the physical space of the darkroom, and shielding facilities, were investigated using a checklist in Iran. A total of 84 hospitals in 51 cities throughout Iran were randomly selected, and the checklists were distributed to the radiation protection officers. In hospitals with multiple radiography rooms, the radiation protection officers were asked to complete the checklist about the room with the highest workload as a baseline to evaluate their facilities. Finally, the authors reviewed all checklists. Results: In radiology departments in control and waiting rooms, the mean of radiation protection was 71.9%. Pregnancy and radiation warning signs and labels were present in 96.1% of the parameters, while gonad shielding protocols were not presented. Conclusion: The principles of observed radiation protection were unsatisfactory, and it is recommended that surveillance be conducted at frequent intervals.

6.
Front Bioeng Biotechnol ; 10: 917368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046674

RESUMO

Nowadays, radiotherapy is one of the most effective treatments for breast cancer. In order to overcome the radioresistance of cancer cells, radio-sensitizing agents can be used combined with irradiation to increase the therapeutic efficiency. Curcumin can enhance the radiosensitivity of cancer cells and decrease their viability by the accumulation of these cells in the G2 phase. The encapsulation of curcumin in a nanoniosomal delivery system increases aqueous solubility and bioavailability, resulting in increased radio sensitivity. The present study aimed to enhance the radio-sensitizing effect of the curcumin-containing nanoniosome (Cur-Nio) when combined with irradiation. Thus, curcumin (0.5 mg ml-1) was loaded on a PEGylated nanoniosome containing Tween 60, cholesterol, DOTAP, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (at ratios of 70:30:10:5, respectively) by the thin-film hydration method. The particle size, zeta potential, entrapment efficiency, and drug-release rate of formulated nanoniosomes were determined. In order to assess cytotoxicity and apoptosis, different doses of irradiation along with various concentrations of free curcumin and Cur-Nio (single or in combination with irradiation) were treated with breast cancer cells. The particle size and zeta potential of Cur-Nio were reported to be 117.5 nm and -15.1 mV, respectively. The entrapment efficiency (EE%) and loading capacities were 72.3% and 6.68%, respectively. The drug-release rate during 6 h was 65.9%. Cell survival in the presence of curcumin at doses of 1 and 3 Gy showed a significant reduction compared with cells irradiated at 48 h and 72 h (p < 0.000). Also, the rate of cytotoxicity and apoptosis was significantly higher in cells treated with the combination of curcumin-containing nanoniosomes and irradiation in comparison with those treated with free curcumin. These findings indicate that the efficacy of pre-treatment with Cur-Nio as a radiosensitizer during radiotherapy enhances irradiation-induced breast cancer cell apoptosis and is a useful strategy to increase the effectiveness of breast cancer therapy.

7.
J Biomed Phys Eng ; 12(3): 245-256, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35698543

RESUMO

Background: Rosemary plant, with phenolic compounds, is known as an antioxidant herb and able to scavenge free radical agents in the biological environment; therefore, it is expected that the rosemary essential oil (R-EO) shows the radioprotective effect to protect individuals who are physically in contact with ionizing radiation. Objective: This study aimed to assess the radioprotective effect of R-EO on human peripheral blood mononuclear cells (PBMCs). Material and Methods: In this experimental study, the toxicity of the rosemary essential oil on PBMCs was assessed by the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. The cells were irradiated at 0. 25 and 200 cGy using a 6 MV X-ray linear accelerator. The survival, apoptosis, necrosis, and survival enhancement factors of cells were analyzed by MTT and flow cytometry analyses with a non-toxic concentration of the rosemary essential oil (IC10). Results: Irradiation of cells in the presence of R-EO caused a significant increase in cell survival compared with the control in both 25 and 200 cGy radiation doses. Also, the percentages of apoptosis and necrosis of cells showed a significant decrease compared with the control. Conclusion: Rosemary essential oil as a natural and non-toxic compound could show favorable radioprotective effects in such a way that significantly increases the survival rate and decreases the percentage of apoptosis and necrosis of PBMCs.

8.
J Biomed Phys Eng ; 12(2): 137-148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35433518

RESUMO

Background: The Mentha-Pulegium essential oil (MP-EO) contains different antioxidant compounds and reduces the indirect effects of dispersed ionizing radiation on biological systems. Objective: The current study aimed to assess a possible radio-protective effect of MP-EO on peripheral blood mononuclear cells (PBMCs). Material and Methods: In this experimental study, MP-EO was firstly prepared and PBMCs were then irradiated in various groups with doses of 25 and 200 cGy of X-rays in the presence of IC10 of MP-EO. After incubation times of 48h and 72h, the survival, apoptosis, and necrosis percentages of PBMCs were determined by MTT assay and flow cytometry analyses; the radio-protective effect of MP-EO was examined. Results: In the presence of 80 µg/ml (IC10) MP-EO, the mean survival percentage of irradiated PBMCs by radiation doses of 25 and 200 cGy was significantly increased after 48h of incubation compared with the control. At 72h of incubation, the mean survival percentage of irradiated PBMCs was significantly increased only at 25 cGy. The percentage of apoptosis and necrosis of PBMCs was significantly reduced in the presence of the MP-EO at both incubation times and radiation doses; therefore, the highest reduction was at 200 cGy and 48h incubation compared to the control. Conclusion: MP-EO as a natural, non-toxic, and cost-effective compound can exhibit a favorable in-vitro radio-protective effect by increasing the survival and decreasing the percentage of apoptosis and necrosis of irradiated PBMCs.

9.
J Med Imaging Radiat Sci ; 53(2): 283-290, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365436

RESUMO

INTRODUCTION: The aim of this study is to evaluate the effective dose and cancer risk of examinations in EOS imaging system in different age and gender groups. MATERIALS AND METHODS: In total, 555 patients who had undergone common EOS imaging examinations were entered into the study. Exposure parameters and patients' characteristics for lower limb, full spine and full body imaging techniques, at different gender and age groups, were evaluated. Finally, effective dose and risk of exposure induced cancer death (REID) was calculated with the Monte Carlo based PCXMC software. RESULTS: The difference between average effective doses of male and female was not significant (p ≥ 0.05), however, the corresponding REID showed statistically significant difference (p ≤ 0.001). The average effective dose of patients (without considering technique, age and gender) was obtained as 0.13 mSv. The corresponding average REID was 8.84 per million. The maximum average effective dose value was obtained for patients over 10 years of age with the full body technique (0.17 ± 0.05 mSv). The maximum average REID value was obtained for full body technique and for patient with 0-10 years old (15.20 ± 10.00 per million). CONCLUSION: In common EOS imaging examinations, the effective dose and REID values of patients in both genders in all age groups are less than the corresponding values in other imaging modalities (according to previous studies). However, according to stochastic effects of ionizing radiation and based on the As Low As Reasonably Achievable (ALARA) principle, more considerations are necessary, especially in the full body technique and for female examinations.


Assuntos
Neoplasias , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Neoplasias/diagnóstico por imagem , Doses de Radiação , Radiografia , Software
10.
J Biomed Phys Eng ; 11(3): 289-296, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189117

RESUMO

BACKGROUND: Euronext Paris Advanced Orthopedic Solutions (EOS) system is a new radiography system, capable of obtaining two-dimensional and three-dimensional images from bony structures in the body. OBJECTIVE: The aim of this study is to estimate equivalent dose and the risk of exposure induced cancer death (REID) in different organs of body due to EOS imaging system. MATERIAL AND METHODS: In this experimental study, totally 120 patients were evaluated for various imaging techniques of lower limb, full spine and whole body. Equivalent dose and REID for colon, liver, lung, stomach, breast, bladder, ovary, blood cells (leukemia) and other organs were calculated using PCXMC software (version 2.0.1.2) based on Monte Carlo simulation of X-ray and human phantoms. The data on imaging technique, including age, sex, kVp, dose area product (DAP), mA, focal to detector distance were introduced as the input of PCXMC. RESULTS: The maximum equivalent dose (mSv) due to EOS imaging system, was estimated for the bladder 0.240±0.066 for the full body technique and 0.240±0.093 for the lower limb technique, respectively, in both males and females. The maximum organ REID (incidence per million) due to EOS imaging system was estimated for lungs as 2.59±1.0 and 2.53±0.9, for the full body technique in both males and females, respectively. CONCLUSION: Generally, the equivalent dose and REID by EOS imaging system in different organs of body is low due to the low radiation dose received by the body in different techniques and views.

11.
J Cancer Res Ther ; 17(2): 537-542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34121704

RESUMO

INTRODUCTION: In the present study, the radioadaptive role of the immune system induced by low dose (LD) was investigated for its in vivo protective activity. MATERIALS AND METHODS: Quantitative analysis of cytokine gene expression was assessed for their in vivo activity in BALB/c mice. To evaluate the adaptive response induced by LD on the mice spleen lymphocyte, the cytokine interleukin (IL)-4, interferon (IFN)-γ, and transforming growth factor (TGF)-ß expression was measured by a real-time quantitative polymerase chain reaction. To verify the radioadaptive effect of LD, animals were preirradiated at 10 cGy from a 60 Co source and then challenge dose at 200 cGy was delivered. Independent sample student's t-test was employed to compare cytokine gene expression in radioadaptive (10 + 200 cGy), LD (10 cGy), high-dose (HD, 200 cGy), and control groups of animals. RESULTS: Following the HD, the cytokine gene expression of IFN-γ, IL-4, and TGF-ß was significantly decreased compared to the control group (P = 0.0001). However, TGF-ß expression was also decreased significantly in the LD and adaptive groups compared to the control group (P = 0.0001). IFN-γ/IL-4 ratio in the adaptive group was significantly decreased compared to the HD group (P = 0.0001). CONCLUSION: These results indicate that the immune system plays an important role for radioadaptive response induction by LD radiation to adjust the harmful effects of HD irradiation.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Animais , Células Cultivadas , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/imunologia , Interferon gama/genética , Interleucina-4/genética , Masculino , Camundongos , Modelos Animais , Cultura Primária de Células , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos da radiação , Fator de Crescimento Transformador beta/genética , Irradiação Corporal Total
12.
Iran J Pharm Res ; 18(4): 1694-1703, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32184839

RESUMO

This study aimed to modify the biological response of cells to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Super paramagnetic iron oxide nanoparticles (SPIONs) were prepared and used with gemcitabine (Gem). These two agents were encapsulated simultaneously intopoly (D, L-lactic-co-glycolic acid) (PLGA) to form multifunctional drug delivery system. The physicochemical characteristics of the nanoparticles (NPs) were studied. The dose enhancement ratio (DER) of various treatment groups was calculated and compared using human breast cancer cell line (MCF-7). The DER for PLGA-SPION-Gem was the highest at 1 Gy60Co (3.18). Cumulative effect from simultaneous use of two radiosensitizer (Gem and SPIONs) was observed. Thus, we have successfully developed PLGA NPs loaded with gemcitabine and SPIONas a radiosensitizersystem which potentially could be used in radiotherapy.

13.
Iran J Pharm Res ; 16(1): 8-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496458

RESUMO

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA ± PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were simultaneously synthesized and encapsulated with Gemcitabine (Gem) in PLGA ± PEG copolymers via W/O/W double emulsification method. Optimum size and encapsulation efficiency for radiosensitization, hyperthermia and diagnostic applications were considered and the preparation parameters systematically were investigated and physicochemical characteristics of optimized nanoparticle were studied. Then SPION-PLGA and PLGA-Gem nanoparticles were prepared with the same optimized parameters and the toxicity of these nanoparticles was compared with Gemcitabine in human breast cancer cell line (MCF-7). The optimum preparation parameters were obtained with Gem/polymer equal to 0.04, SPION/polymer equal to 0.8 and 1% sucrose per 20 mg of polymer. The hydrodynamic diameters of all nanoparticles were under 200 nm. Encapsulation efficiency was adjusted between 13.2% to 16.1% for Gemcitabine and 48.2% to 50.1% for SPION. In-vitro Gemcitabine release kinetics had controlled behavior. Enhancement ratios for PLGA-Gem and SPION-PLGA-Gem at concentration of nanoparticles equal to IC50 of Gemcitabine were 1.53 and 1.89 respectively. The statistical difference was significant (p-value = 0.006 for SPION-PLGA-Gem and p-value = 0.015 for PLGA-Gem compared with Gemcitabine). In conclusion, we have successfully developed a Gemcitabine loaded super paramagnetic PLGA-Iron Oxide multifunctional drag delivery system. Future work includes in-vitro and in-vivo investigation of radiosensitization and other application of these nanoparticles.

14.
Rep Pract Oncol Radiother ; 21(1): 8-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900352

RESUMO

AIM: The aim of this study is to assess the effect of the compositions of various soft tissues and tissue-equivalent materials on dose distribution in neutron brachytherapy/neutron capture therapy. BACKGROUND: Neutron brachytherapy and neutron capture therapy are two common radiotherapy modalities. MATERIALS AND METHODS: Dose distributions were calculated around a low dose rate (252)Cf source located in a spherical phantom with radius of 20.0 cm using the MCNPX code for seven soft tissues and three tissue-equivalent materials. Relative total dose rate, relative neutron dose rate, total dose rate, and neutron dose rate were calculated for each material. These values were determined at various radial distances ranging from 0.3 to 15.0 cm from the source. RESULTS: Among the soft tissues and tissue-equivalent materials studied, adipose tissue and plexiglass demonstrated the greatest differences for total dose rate compared to 9-component soft tissue. The difference in dose rate with respect to 9-component soft tissue varied with compositions of the materials and the radial distance from the source. Furthermore, the total dose rate in water was different from that in 9-component soft tissue. CONCLUSION: Taking the same composition for various soft tissues and tissue-equivalent media can lead to error in treatment planning in neutron brachytherapy/neutron capture therapy. Since the International Commission on Radiation Units and Measurements (ICRU) recommends that the total dosimetric uncertainty in dose delivery in radiotherapy should be within ±5%, the compositions of various soft tissues and tissue-equivalent materials should be considered in dose calculation and treatment planning in neutron brachytherapy/neutron capture therapy.

15.
Med Dosim ; 39(1): 54-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24485053

RESUMO

Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.


Assuntos
Modelos Biológicos , Neoplasias/fisiopatologia , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Simulação por Computador , Humanos , Fótons/uso terapêutico , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...